Advertisement

Determination of hydrodynamic radius: a comparison of ultracentrifuge methods with dynamic light scattering

  • P. M. BuddEmail author
  • R. K. Pinfield
  • C. Price
Gels, Emulsions, And Dispersions
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 107)

Abstract

Hydrodynamic radius, r h, may be determined from the limiting diffusion coefficient, D 0, from the limiting sedimentation coefficient, s 0, or, using simple models for the concentration dependence, from the sedimentation coefficient, s, at a finite concentration. For water/AOT/heptane water-in-oil microemulsions, values of r h determined from s are shown to agree well with those obtained from s 0 or D 0 determined using an analytical ultracentrifuge, and with literature values from dynamic light scattering. For several aqueous polyurethane dispersions, sedimentation velocity demonstrated the presence of small species with r h<5 nm and medium-sized species with r h in the range 10–17 nm, as well as much larger aggregates. For these complex dispersions, dynamic light scattering behavior was dominated by the large aggregates and analysis by the CONTIN method was not able to detect all the species present.

Key words

Hydrodynamic radius microemulsion polyurethane dispersion sedimentation velocity diffusion light scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hwan R-N, Miller CA, Fort T (1979) J Coll Interf Sci 68:221CrossRefGoogle Scholar
  2. 2.
    Barnea E, Mizrahi J (1973) Chem Eng J 5:171CrossRefGoogle Scholar
  3. 3.
    Batchelor GK (1972) J Fluid Mech 52:245CrossRefGoogle Scholar
  4. 4.
    Budd PM (1989) In: Allen G, Bevington JC, Booth C, Price C (eds) Comprehensive Polymer Science, Vol 1, Chap 10. Pergamon, Oxford, 199Google Scholar
  5. 5.
    Mathews MB, Hirschhorn E (1953) J Coll Sci 8:86CrossRefGoogle Scholar
  6. 6.
    Eicke H-F, Rehak J (1976) Helv Chim Acta 59:2883CrossRefGoogle Scholar
  7. 7.
    Zulauf M, Eicke, H-F (1979) J Phys Chem 83:480CrossRefGoogle Scholar
  8. 8.
    Robinson BH, Steytler DC, Tack RD (1979) J Chem Soc Faraday Trans I 75:481CrossRefGoogle Scholar
  9. 9.
    Oldfield C, Freedman RB, Robinson BH (1996) J Chem Soc Faraday Trans I 92:73CrossRefGoogle Scholar
  10. 10.
    Robinson BH, Toprakcioglu C, Dore JC, Chieux P (1984) J Chem Soc Faraday Trans I 80:13CrossRefGoogle Scholar
  11. 11.
    Aveyard R, Binks BP, Clark C, Mead J (1986) J Chem Soc, Faraday Trans I 82:125CrossRefGoogle Scholar
  12. 12.
    Aveyard R, Binks BP, Mead J, Clint JH (1988) J Chem Soc Faraday Trans I 84:675CrossRefGoogle Scholar
  13. 13.
    Pinfield RK (1996) PhD Thesis, University of ManchesterGoogle Scholar
  14. 14.
    Provencher SW (1982) Computer Phys Comm 27:213CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1997

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ManchesterManchesterUnited Kingdom

Personalised recommendations