Advertisement

Investigation of quantum size colloids using the XL-I ultracentrifuge

  • H. CölfenEmail author
  • T. Pauck
  • M. Antonietti
Polymers, Colloids, And Supramolecular Systems
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 107)

Abstract

Quantum size colloids attract a steadily growing scientific and economical interest because of their size-dependent optical and electrical properties. It is shown that the fractionation in the analytical ultracentrifuge enables the characterization of individual species even in complicated mixtures. If an ultracentrifuge with combined UV-absorption and Rayleigh interference optics is used, dependence of the spectra as well as of extinction coefficients on the particle size can be examined. As it is also possible to monitor particle growth from its initial stages, the combined spectral and particle size information can lead to an understanding of the particle growth mechanism. This is demonstrated for model systems of aggregates of small individual particles and grown particles of the same size. Furthermore, sedimentation velocity experiments prove to be very useful for determining the effectiveness of reactions performed in “micellar nanoreactors” and for determining the extinction coefficient of one component in a complicated mixture.

Key words

Quantum size effect colloids, analytical ultracentrifugation sedimentation velocity particle growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonietti M, Förster S, Hartmann J, Oestreich S, Wenz E (1996) Nachr Chem Techn Lab 44:579Google Scholar
  2. 2.
    Spatz JP, Roescher A, Möller M (1996) Adv Mater 8:4CrossRefGoogle Scholar
  3. 3.
    Förster S, Breulmann M, Wenz E, Antonietti M, Haase M, Schneider T, Weller H (1997) in preparationGoogle Scholar
  4. 4.
    Bahnemann DW, Kormann C, Hoffmann MR (1987) J Phys Chem 91:3789CrossRefGoogle Scholar
  5. 5.
    Oestreich S (1997) Ph.D thesis, PotsdamGoogle Scholar
  6. 6.
    Antonietti M, Gröhn F (1997) Angew Chem, acceptedGoogle Scholar
  7. 7.
    Bronstein L, Platonova O, Valetsky P, Sedlak M, Mayer A, Hartmann J, Breulmann M, Cölfen H, Antonietti M (1997) in preparationGoogle Scholar
  8. 8.
    Haase M, Weller H, Henglein A (1988) J Phys Chem 92:482CrossRefGoogle Scholar
  9. 9.
    Mächtle W (1984) Makromol Chem 185:1025CrossRefGoogle Scholar
  10. 10.
    Mächtle W (1988) Angew Makromol Chem 162:35CrossRefGoogle Scholar
  11. 11.
    Müller HG (1989) Colloid Polym Sci 267:1113CrossRefGoogle Scholar
  12. 12.
    Mächtle W (1992) Makromol Chem, Macromol Symp 61:131Google Scholar
  13. 13.
    Mächtle W (1992) In: Harding SE, Rowe AJ, Horton JC (eds), Analytical Ultracentrifugation in Biochemistry and Polymer Science, Chap 10. The Royal Society of Chemistry, Cambridge, UK p. 147Google Scholar
  14. 14.
    Müller HG, Herrmann F (1995) Progr Colloid Polym Sci 99:114CrossRefGoogle Scholar
  15. 15.
    Rapoport DH, Vogel W, Cölfen H, Schlögl R, J Phys Chem B 101:4175Google Scholar
  16. 16.
    Cölfen H, Pauck T (1997) Colloid Polym Sci 275:175CrossRefGoogle Scholar
  17. 17.
    Braun GA, Bönnemann H, Cölfen H, Antonietti M (1997) (in preparation)Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1997

Authors and Affiliations

  1. 1.Max-Planck-Institut für Kolloid-und Grenzflächenforschung KolloidchemieTeltow

Personalised recommendations