Skip to main content

The self-association of basic helix-loop-helix peptides

  • Biological Systems
  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 107))

Abstract

As part of a study into the homo- and hetero-oligomerization properties of muscle-specific transcriptional factors, and their interation with DNA, sedimentation equilibrium studies, accompanied by circular dichroism measurements, have been made on peptides derived from the helix-loop-helix regions of MyoD and E47. In addition, a chimeric peptide, in which residues from the loop region of E47 were substituted into that of MyoD, a fluorescently labelled derivative of the MyoD-bHLH peptide and a disulphide crosslinked version of MyoD-bHLH have also been investigated. MyoD-bHLH has been found to form a monomer tetramer equilibrium in the µM concentration range, while E47-bHLH exists as a highly associated dimer. The MyoD-bHLH derivatives appear to exhibit the same oligomerization behavior as their MyoD-bHLH parent. CD studies of the disulphide-crosslinked peptide show that a level of organization higher than that of the dimer is required for structural stability in the MyoD-bHLH system. The rôle of self-association in the context of the biological function of these peoteins is discussed.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas RM, Wendt H, Zampieri A, Bosshard HR (1996) Colloid Polym Sci 99:24–30

    Article  Google Scholar 

  2. Thomas RM, Zampieri A, Jumel K, Harding SE (1997) Eur Biophys J 25:405–410

    Article  PubMed  CAS  Google Scholar 

  3. Davis RL, Weintraub H (1992) Science 256:1027–1030

    Article  PubMed  CAS  Google Scholar 

  4. Weintraub H (1993) Cell 75:1241–1244

    Article  PubMed  CAS  Google Scholar 

  5. Caudy M, Vassin H, Brand M, Tuma R, Jan LY, Jan YN (1988) Cell 55:1061–1067

    Article  PubMed  CAS  Google Scholar 

  6. Cabrera CV, Alonso MC (1991) EMBO J 10:2965–2973

    PubMed  CAS  Google Scholar 

  7. Weintraub H, Davis RL, Tapscott S, Thayer M, Krause M, Benazra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, Zhuang Y, Lassar A (1991) Science 251:761–766

    Article  PubMed  CAS  Google Scholar 

  8. Weintraub H (1993) Cell 75:1241–1244

    Article  PubMed  CAS  Google Scholar 

  9. Olson EN, Klein WH (1994) Genes Dev 8:1–8

    Article  PubMed  CAS  Google Scholar 

  10. Murre C, McCaw PS, Baltimore D (1989) Cell 56:777–783

    Article  PubMed  CAS  Google Scholar 

  11. Lassar A, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H (1991) Cell 66:305–315

    Article  PubMed  CAS  Google Scholar 

  12. Blackwell TK, Weintraub H (1990) Science 250:1104–1110

    Article  PubMed  CAS  Google Scholar 

  13. Ma PCM, Rould MA, Weintraub H, and Pabo CO (1994) Cell, 77:451–459

    Article  PubMed  CAS  Google Scholar 

  14. Ellenberger T, Fass D, Arnaud M, and Harrison SC (1994) Genes Dev 8:970–980

    Article  PubMed  CAS  Google Scholar 

  15. Anthony-Cahill SJ, Benfield PA, Fairman R, Wasserman ZR, Brenner SL, Stafford WF, Altenbach C, Hubbell WL, DeGrado WF (1992) Science 255:979–983

    Article  PubMed  CAS  Google Scholar 

  16. Fairman R, Beran-Steed RK, Anthony-Cahill SJ, Lear JD, Stafford WF, DeGrado WF, Benfield PA, Brenner SL (1993) Proc Natl Acad Sci 90:10429–10433

    Article  PubMed  CAS  Google Scholar 

  17. Studier FW, Moffat BA (1986) J Mol Biol 189:113–130

    Article  PubMed  CAS  Google Scholar 

  18. Laue TM, Shah B, Ridgeway TM and Pelletier SL (1992) In: Harding SE, Rowe AJ, Horton JC (eds), Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, Cambridge, U.K.

    Google Scholar 

  19. Laue TM, Starovasnik MA, Weintraub H, Sun X-H, Snider L, Klevit RE (1995) Proc Natl Acad Sci 92:11824–11828

    Article  PubMed  CAS  Google Scholar 

  20. Starovasnik, MA, Blackwell TK, Laue TM, Weintraub H, Klevit RE (1992) Biochemistry 31:9891–9903

    Article  PubMed  CAS  Google Scholar 

  21. Benezra R, Davis RL, Lockshorn D, Turner DL, Weintraub H (1990) Cell 61:49–59

    Article  PubMed  CAS  Google Scholar 

  22. Sun XH, Copeland NG, Jenkins NA, Baltimore D (1991) Mol Cell Biol 11:5603–5611

    PubMed  CAS  Google Scholar 

  23. Wilson RB, Megerditch K, Shen C, Benezra R, Zwollo P, Dymecki SM, Desiderio SV, Kadesch T (1991) Mol Cell Biol 11:6185–6191

    PubMed  CAS  Google Scholar 

  24. Jen Y, Weintraub H, Benezra R (1992) Genes Dev 6:1466–1479

    Article  PubMed  CAS  Google Scholar 

  25. Sun XH, Baltimore D (1991) Cell 64:459–470

    Article  PubMed  CAS  Google Scholar 

  26. Matallo SJ, Schepartz A (1997) Nat Struct Biol 4:115–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Thomas .

Editor information

R. Jaenicke H. Durchschlag

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Wendt, H., Thomas, R.M. (1997). The self-association of basic helix-loop-helix peptides. In: Jaenicke, R., Durchschlag, H. (eds) Analytical Ultracentrifugation IV. Progress in Colloid & Polymer Science, vol 107. Steinkopff. https://doi.org/10.1007/BFb0118022

Download citation

  • DOI: https://doi.org/10.1007/BFb0118022

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1106-4

  • Online ISBN: 978-3-7985-1656-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics