Advertisement

Studies of ligand-mediated conformational changes in enzymes by difference sedimentation velocity in the Optima XL-A ultracentrifuge

  • M. P. Jacobsen
  • D. J. Winzor
Biological Systems
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 107)

Abstract

Difference sedimentation velocity has provided an extremely convenient procedure for detecting and quantifying ligand-mediated conformational changes in enzymes by virture of differences in hydrodynamic volume. However, the replacement of the Beckman model E instrument by the XL-A has necessitated reexamination of the existing method of analysis, which relied upon the comparison of simultaneously recorded distributions of solute in the two cells. After demonstration of the validity of the revised procedure by its application to simulated sedimentation velocity data, differential sedimentation velocity has been used to confirm the effect of phenylalanine on the sedimentation coefficient of rabbit muscle pyruvate kinase. Corresponding studies of the effect of glucose on the sedimentation coefficient of yeast hexokinase have demonstrated the substrate-mediated decrease in enzyme size that is evident from X-ray crystallographic studies, and identified this effect as the consequence of substrate perturbation of a preexisting enzyme isomerization rather than of substrate-induced isomerization of yeast hexokinase.

Key words

Difference sedimentation velocity enzyme isomerization pyruvate kinase hexokinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerhart JC, Schachman HK (1968) Biochemistry 7:538PubMedCrossRefGoogle Scholar
  2. 2.
    Schumaker V, Adams P (1968) Biochemistry 7:3422PubMedCrossRefGoogle Scholar
  3. 3.
    Schumaker V (1968) Biochemistry 7:3427PubMedCrossRefGoogle Scholar
  4. 4.
    Howlett GJ, Schachman HK (1977) Biochemistry 16:5077PubMedCrossRefGoogle Scholar
  5. 5.
    Oberfelder RW, Barisas BG, Lee JC (1984) Biochemistry 23:458Google Scholar
  6. 6.
    Harris SJ, Winzor DJ (1988) Arch Biochem Biophys 265:458PubMedCrossRefGoogle Scholar
  7. 7.
    Bennett WS, Steitz TA (1980) J Mol Biol 140:211PubMedCrossRefGoogle Scholar
  8. 8.
    Rand RP, Fuller NL, Butko P, Francis G, Nichols P (1993) Biochemistry 32:5925PubMedCrossRefGoogle Scholar
  9. 9.
    Winzor DJ, Wills (1995) Biophys Chem 57:103PubMedCrossRefGoogle Scholar
  10. 10.
    Goldberg RJ (1953) J Phys Chem 57:194CrossRefGoogle Scholar
  11. 11.
    Trautman R, Schumaker VN (1954) J Chem Phys 22:551CrossRefGoogle Scholar
  12. 12.
    Shill JP, Peters BA, Neet KE (1974) Biochemistry 13:3864PubMedCrossRefGoogle Scholar
  13. 13.
    Hoggett JG, Kellet GL (1976) Eur J Biochem 66:65PubMedCrossRefGoogle Scholar
  14. 14.
    Bergman DA, Winzor DJ (1989) J Theor Biol 137:171PubMedCrossRefGoogle Scholar
  15. 15.
    Bergman DA, Shearwin KE, Winzor DJ (1989) Arch Biochem Biophys 274:55PubMedCrossRefGoogle Scholar
  16. 16.
    Monod J, Wyman J, Changeux J-P (1965) J Mol Biol 12:88PubMedCrossRefGoogle Scholar
  17. 17.
    Koshland DE (1959) J Cell Comp Physiol Suppl 1:245CrossRefGoogle Scholar
  18. 18.
    Koshland DE, Némethy G, Filmer D (1966) Biochemistry 5:365PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1997

Authors and Affiliations

  • M. P. Jacobsen
    • 1
  • D. J. Winzor
    • 1
  1. 1.Centre for Protein Structure, Function and Engineering Department of BiochemistryUniversity of QueenslandBrisbaneAustralia

Personalised recommendations