Rapid molecular mass determination by sedimentation velocity experiments and direct fitting of the concentration profiles

  • J. Behlke
  • O. Ristau
Data Analysis
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 107)


We present a method for the direct molecular mass determination from sedimentation velocity experiments. It is based on a non-linear least-squares fitting procedure of the radial concentration profiles and simultaneous estimation of the sedimentation coefficient and the ratio of sedimentation/diffusion coefficients considering approximate solutions of the Lamm equation. Different model functions from Faxén as well as Archibald type derived by Fujita [4] were used to describe the sedimentation behavior of macro-molecules during the centrifugation. By means of a computer program, LAMM sedimentation and diffusion constants of some proteins were determined. The method presented here appears to be useful for the rapid molecular mass determination of proteins large than 10 kDa. One of the equations of the Archibald type is also suitable for substances of low molecular mass of about 1 kDa. The model function neither requires the existence of a plateau region nor a meniscus region free of solute.

Key words

Sedimentation coefficient diffusion coefficient molecular mass proteins non-linear least-squares fit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harding SE, Rowe AJ, Horton JC (eds) (1992) Analytical Ultracentrifugation in Biochemistry and Polymer Science. The Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  2. 2.
    Schuster TM, Laue TM (eds) (1994) Modern Analytical Ultracentrifugation. Birkhäuser, BostonGoogle Scholar
  3. 3.
    Yphantis DA (1964) Biochemistry 3:297PubMedCrossRefGoogle Scholar
  4. 4.
    Fujita H (1962) Mathematical Theory of Sedimentation Analysis. Academic Press, New YorkGoogle Scholar
  5. 5.
    Fujita H (1975) Foundations of Ultracentrifugal Analysis. Wiley, New YorkGoogle Scholar
  6. 6.
    Lamm O (1929) Ark. Mat. Astr. o. Fys. 21 B(2):1Google Scholar
  7. 7.
    Faxén H (1929) Ark. Mat. Astr. o. Fys. 21 B(3):1Google Scholar
  8. 8.
    Philo JS (1994) In: Schuster TM, Laue TM (eds), Modern Analytical Ultracentrifugation. Birk häuser, Boston, p 156Google Scholar
  9. 9.
    Philo JS (1997) Biophys J 72:435PubMedCrossRefGoogle Scholar
  10. 10.
    Behlke J, Ristau O (1997) Biophys J 72:428PubMedGoogle Scholar
  11. 11.
    Claverie JM, Dreux H, Cohen R (1975) Biopolymers 14:1685PubMedCrossRefGoogle Scholar
  12. 12.
    Cox DJ, Dale RS (1981) In: Frieden C, Nichol LW (eds), Protein-Protein Interaction. Wiley, New York, p 173Google Scholar
  13. 13.
    Fujita H, MacCosham VJ (1959) J Chem Phys 30:291CrossRefGoogle Scholar
  14. 14.
    Holladay LA (1979) Biophys Chem 10:187PubMedCrossRefGoogle Scholar
  15. 15.
    Gautschi W (1969) Comm ACM 12:635CrossRefGoogle Scholar
  16. 16.
    Levenberg K (1944) Quart Appl Math 2:164Google Scholar
  17. 17.
    Wynne CG, Wormell PMJH (1963) Appl Opt 2:1233Google Scholar
  18. 18.
    Holladay LA (1980) Biophys Chem 11:303PubMedCrossRefGoogle Scholar
  19. 19.
    Timchenko AA, Denesyuk AI, Fedorov BA (1981) Biofizika 26:32PubMedGoogle Scholar
  20. 20.
    Margoliash E, Smith EL, Kreil G, Tuppy H (1961) Nature 192:1121PubMedCrossRefGoogle Scholar
  21. 21.
    Edmundson AB (1965) Nature 205:883CrossRefGoogle Scholar
  22. 22.
    Behlke J, Wandt I (1973) Acta Biol Med Germ 31:383PubMedGoogle Scholar
  23. 23.
    Canfield RE (1963) J Biol Chem 238:2698PubMedGoogle Scholar
  24. 24.
    Schausberger A, Pilz I (1977) Makromolekulare Chem 178:211CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1997

Authors and Affiliations

  • J. Behlke
    • 1
  • O. Ristau
    • 1
  1. 1.Max-Delbrueck Center for Molecular MedicineBerlinGermany

Personalised recommendations