Skip to main content

Coordination in inorganics

II. Coordination number — a geometrical consideration

  • Conference paper
  • First Online:
The Colloid Science of Lipids

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 108))

  • 70 Accesses

Abstract

Coordination number (CN) is discussed from a geometrical point of view. Two models for the determination of CN 8 to 11 have been developed and tested with good results on 78 polyhedra consisting of alkali/alkaline earth metals as central atoms and halogen atoms/water oxygens as ligands. In these models the polyhedral volume (Volpoly), the volume of a sphere — least-squares fitted to the observed polyhedron (Volsph), and the CN itself are used in the calculations in order to optimize and motivate the selected number of ligands. The first model shows that for a certain CN there exists a linear correlation between Volpoly and Volsph. Since the values of the observed polyhedra lay close to the line obtained for ideal polyhedra, it was assumed that the CN is fairly well described. In the second model the Volpoly/Volsph ratio is plotted against the coordination number for observed and ideal polyhedra. With increasing numbers of ligands the observed values exhibit a trend towards a closer adaption to the curve obtained from the ideal polyhedra. This adaption, or optimum CN, can be used as a criterion that motivates the choice of a certain coordination number. Finally, comparisons are made between the second model and the calculated bond distances in some observed polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sjövall R (1997) Thesis, Lund University, Sweden

    Google Scholar 

  2. Balić Žunić T, Vicković I (1994) J Appl Crystallogr 29:305

    Article  Google Scholar 

  3. Balić Žunić T, Mackovicky E (1996) Acta Crystallogr B52:78

    Google Scholar 

  4. Philippot E, Ribes M, Maurin M (1971) Rev Chimie Minér 8:99

    CAS  Google Scholar 

  5. Lidin S, Larsson AK (1991) Acta Chem Scand 45:856

    Article  CAS  Google Scholar 

  6. Klug HP, Alexander L (1944) J Amer Chem Soc 66:1056

    Article  CAS  Google Scholar 

  7. Sjövall R, Svensson C (1988) Acta Crystallogr C44:207

    Google Scholar 

  8. Figgis BN, Gerloch M, Mason R (1964) Acta Crystallogr 17:506

    Article  CAS  Google Scholar 

  9. Mackovicky E (1996) Private communication

    Google Scholar 

  10. Hansen S (1993) J Solid State Chem 105:247

    Article  CAS  Google Scholar 

  11. Sjövall R (1989) Acta Crystallogr C45:667

    Google Scholar 

  12. Sjövall R, Svensson C (1997) Z Kristallogr 212:732

    Article  Google Scholar 

  13. Touchard V, Louër M, Auffredic JP, Louër D (1987) Rev Chimie Minér 24:414

    CAS  Google Scholar 

  14. Thiele G, Rotter HW, Zimmermann K (1986) Z Naturforsch 41B:269

    CAS  Google Scholar 

  15. Sjövall R, Svensson C, Lidin S (1996) Z Kristallogr 211:234

    Article  Google Scholar 

  16. Shannon RD (1976) Acta Crystallogr A32:751

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Lindman B. W. Ninham

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Sjövall, R., Lidin, S. (1998). Coordination in inorganics. In: Lindman, B., Ninham, B.W. (eds) The Colloid Science of Lipids. Progress in Colloid & Polymer Science, vol 108. Steinkopff. https://doi.org/10.1007/BFb0117978

Download citation

  • DOI: https://doi.org/10.1007/BFb0117978

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1112-5

  • Online ISBN: 978-3-7985-1655-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics