Skip to main content

Hexagonal mesophases: honeycomb, froth, mesh or sponge?

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 108))

Abstract

The mesostructure of hexagonal phases in lyotropic liquid crystals and some inorganic derivates is reconsidered in topological terms, and it is argued that related rhombohedral sponge and mesh structures may well form in the vicinity of a conventional hexagonal phase. The standard signature of a hexagonal phase from small-angle scattering patterns is insufficient evidence for the hexagonal honeycomb arrangement of one-dimensional channels believed to characterize the mesostructure, and an alternative swelling analysis is suggested to offer a more detailed probe of film topology in hexagonal systems.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Larsson K (1989) J Phys Chem 93:7304

    Article  CAS  Google Scholar 

  2. Luzzati V, Gulik-Krzywicki T, Tardieu A (1968) Nature 218:1031

    Article  CAS  Google Scholar 

  3. Larsson K, Fontell K, Krog N (1980) Chem Phys Lipids 27:321

    Article  CAS  Google Scholar 

  4. Hyde ST, Andersson S, Ericsson B, Larsson K (1984) Z Kristallogr 168:213

    Article  CAS  Google Scholar 

  5. Fischer W, Koch E (1996) Phil Trans Roy Soc Lond A 354:2105

    Article  CAS  Google Scholar 

  6. Hilbert D, Cohn-Vossen S (1952) Geometry and the Imagination. Chelsea, New York

    Google Scholar 

  7. Fogden A, Hyde ST (1992) Acta Cryst A48:442

    Google Scholar 

  8. Fogden A (1992) Acta Cryst A48:575

    Google Scholar 

  9. Fogden A, Hyde ST (1992) Acta Cryst A48:575

    Google Scholar 

  10. Fogden A, Hyde ST, in preparation

    Google Scholar 

  11. Anderson DM, PhD thesis, University of Minnesota

    Google Scholar 

  12. Koch E, Fischer W (1990) Acta Cryst A46:33 (For the C(D) surface, the flat point along 3m is not of order 4 as listed in their Table 1, but rather of first order, surrounded by a further three first-order flat points. This generalization, while complicating the parametrization, is necessary for the minimal surface to globally lock into its space group.)

    Google Scholar 

  13. Fogden A, Lidin S (1994) J Chem Soc Faraday Trans 90:3423

    Article  CAS  Google Scholar 

  14. Fogden A, Daicic J, Kidane A (1997) J Phys II France 7:229

    Article  CAS  Google Scholar 

  15. de Vries R (1996) J Chem Phys 103:6740

    Article  Google Scholar 

  16. Gackstatter F (1990) Colloque de Physique C-7:163

    Google Scholar 

  17. Nitsche JCC (1993) In Friedman JN, Davis T (eds), Statistical Thermodynamics and Differential Geometry of Microstructured Materials, Springer, New York

    Google Scholar 

  18. Marcelja S (1995) Fizika B4:197

    Google Scholar 

  19. Hyde ST (1995) Colloids Surfaces A: Physicochem Eng Aspects 103:227

    Article  CAS  Google Scholar 

  20. Helfrich W (1973) Z Naturforsch 28c:693

    Google Scholar 

  21. Israelachvili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans 2, 72:1525

    Article  Google Scholar 

  22. Fogden A, Hyde ST, Lundberg G (1991) J Chem Soc Faraday Trans 87(7):949

    Article  CAS  Google Scholar 

  23. Fontell K (1990) Colloid Polym Sci 268:264

    Article  CAS  Google Scholar 

  24. Luzzati V, Tardieu A, Gulik-Krzywicki T (1968) Nature 217:1028

    Article  CAS  Google Scholar 

  25. Lidin S (1988) J Phys France 49:421

    Article  Google Scholar 

  26. Templer RH, Seddon JM, Duesing PM, Winter R, Erbes J, J Phys Chem, in press

    Google Scholar 

  27. Larsson K (1988) J Coll Interf Sci 122:298

    Article  CAS  Google Scholar 

  28. Luzzati V (1995) J Phys (France) II 5:1649

    Article  CAS  Google Scholar 

  29. Hyde ST (1996) Curr Opinion Solid State Mat Sci 1:653

    Article  CAS  Google Scholar 

  30. Hyde ST (1997) Langmuir 13(4):842

    Article  CAS  Google Scholar 

  31. Huo Q, Margolese D, Ciesla U, Feng P, Gier T, Sieger P, Leon R, Petroff P, Schüth F, Stucky G (1994) Nature 368:317

    Article  CAS  Google Scholar 

  32. Beck JS, Vartuli J, Roth W, Leonowicz M, Kresge C, Schmitt K, Chu C, Olson D, Sheppard E, McCullen S, Higgins J, Schenkler J (1992) J Am Chem Soc 114:10835

    Article  Google Scholar 

  33. Inagaki S, Koiwai A, Suzuki N, Fukushima Y, Kuroda K (1996) Bull Chem Soc Japan

    Google Scholar 

  34. Stucky G, Monnier A, Schüth F, Huo Q, Margolese D, Kumar D, Krishnamurty M, Petroff P, Firouzi A, Jamicke M, Chmelka B (1994) Mol Cryst Liq Cryst 240:187

    Article  CAS  Google Scholar 

  35. Landry CC, Monnier A, Norby P, Hanson JC, Hyde ST, Chmelka BF, Stucky GD, in preparation

    Google Scholar 

  36. Inagaki S, Fukushima Y, Kuroda K (1993) Chem Comm 8:680

    Article  Google Scholar 

  37. Clerc M (1996) J Phys II (France) (6):961

    Google Scholar 

  38. Tolbert SH, Schäffer TE, Feng J, Hansma PK, Stucky GD (1997) Chem Mater (9):1962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Lindman B. W. Ninham

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Hyde, S.T., Fogden, A. (1998). Hexagonal mesophases: honeycomb, froth, mesh or sponge?. In: Lindman, B., Ninham, B.W. (eds) The Colloid Science of Lipids. Progress in Colloid & Polymer Science, vol 108. Steinkopff. https://doi.org/10.1007/BFb0117971

Download citation

  • DOI: https://doi.org/10.1007/BFb0117971

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1112-5

  • Online ISBN: 978-3-7985-1655-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics