Advertisement

Comparing the UK Fine Resolution Antarctic Model (FRAM)

With 3-years of Geosat altimeter data
  • Raymond C. V. Feron
Seminars
  • 496 Downloads
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 50)

Abstract

The United Kingdom Fine Resolution Antarctic Model is compared to 3 years of Geosat altimeter data. To enable a proper comparison two analysis techniques (Fourier and principal component analysis) are applied to both model results and the “real ocean” altimeter observations. In general it was found that the model succeeded in simulating important characteristics of the southern ocean. The analysis results from the very complex altimeter observations were verified, and the interpretation of Geosat data was strongly improved. The applied analysis techniques where shown to be effective in isolating ring-like phenomena and detecting possible periodic behaviour. In both the Agulhas, Brazil Malvinas, and East Australian Current regular ring formations take place, roughly every 100, 150, and 130 days respectively. The model only generated periodic ring formations in the Agulhas and East Australian Current, both with a very regular 125–130 days period. This period is clearly a model favored harmonic (1/3 year) which is however surprisingly close to the observations.

Keywords

Southern Ocean Altimeter Data East Australian Current Agulhas Current Altimeter Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretherton, F.P., R.E. Davis, and C.B. Fandry, A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep Sea Res., 23, 559–582, 1976.Google Scholar
  2. Chelton, D.B., M.G. Schlax, D.L. Witter, and J.D. Richman, Geosat altimeter observations of the surface circulation of the Southern Ocean, J. Geophys. Res., 95, (C10), 17,877–17,903, 1990.Google Scholar
  3. Cheney R.E., J.G. Marsh, and B.D. Beckley, Global mesoscale variability from collinear tracks of SEASAT altimeter data, J. Geophys. Res., 88, (C7), 4343–4354, 1983.Google Scholar
  4. Cheney, R.E., B.C. Douglas, R.W. Agreen, L. Miller, D.L. Porter, and N.S. Doyle, Geosat altimeter geophysical data record user handbook, NOAA Techn. Memo. NOS NGS-46, Natl. Oceanic and Atmos. Admin. Rockville, Md., 1987.Google Scholar
  5. Cox, M.D., A primitive equation, 3-dimensional model of the ocean, GFDL, Ocean Gr. Tech. Rep., 1, 1984.Google Scholar
  6. De Ruijter, W.P.M., Asymptotic analysis of the Agulhas and Brazil Current Systems, J. Phys. Oceanogr., 12, 361–373, 1982.CrossRefGoogle Scholar
  7. Dewar W., Ventilating warm rings: Theory and energetics, J. Phys. Oceanogr., 17, 2219–2231, 1987.CrossRefGoogle Scholar
  8. Feron, R.C.V., W.P.M. De Ruijter, and D. Oskam, Ring-shedding in the Agulhas Current System, J. Geophys. Res., 97, 9467–9477, 1992.Google Scholar
  9. Feron, R.C.V., M.C. Naeije, and D. Oskam, Quality estimates for ocean variability results from satellite altimetry, Mar. Geodesy, 15, 1–18, 1991.Google Scholar
  10. Garzoli, S.L., and Z. Garraffo, Transports, frontal motions and eddies at the Brazil-Malvinas Currents Confluence, Deep Sea Res., 36, 681–703, 1989.CrossRefGoogle Scholar
  11. Gordon, A.L., Interocean exchange of thermocline water, J. Geophys. Res., 91 (C4), 5037–5046, 1986.Google Scholar
  12. Gordon, A.L., J.R.E. Lutjeharms, and M.L. Gründlingh, Stratification and circulation at the Agulhas Retroflection, Deep Sea Res., 34, 565–599, 1987.CrossRefGoogle Scholar
  13. Gordon, A.L., and W.F. Haxby, Agulhas eddies invade the South Atlantic-Evidence from Geosat altimeter and shipboard CTD, J. Geophys. Res., 95, (C3), 3117–3125, 1990.CrossRefGoogle Scholar
  14. Gordon, A.L., R.F. Weiss, W.M. Smethie, Jr., and M.J. Warner, Thermocline and intermediate water communication between the South Atlantic and Indian Oceans, J. Geophys. Res., 97, (C5), 7223–7240, 1992.Google Scholar
  15. Hellerman, S., and M. Rosenstein, Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 13, 1093–1104, 1983.CrossRefGoogle Scholar
  16. Kelly, K., Comment on “Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara Channel” by G.S.E. Lagerloef and R.L. Bernstein, J. Geophys. Res., 93 15,753–15,754, 1988.Google Scholar
  17. Legeckis, R., and A.L. Gordon, Satellite observations of the Brazil and Falklands currents-1975 to 1976 and 1978, Deep Sea Res., 29, 275–401, 1982.Google Scholar
  18. Levitus, S., Climatological atlas of the world ocean, NOAA, Prof. Pap., 13 U.S. Dept. of Commerce, 173 pp, 1982.Google Scholar
  19. Lutjeharms J.R.E., Meridional heat transport across the Sub-tropical Convergence by a warm eddy, Nature, 331, 251–254, 1988.CrossRefGoogle Scholar
  20. Lutjeharms, J.R.E., and R.C. van Ballegooyen, The retroflection of the Agulhas Current, J. Phys. Oceanogr., 18, 1570–1583, 1988.CrossRefGoogle Scholar
  21. Milbert, D., B. Douglas, R. Cheney, L. Miller, and R. Agreen, Calculation of Sea Level Time Series from non-collinear Geosat altimeter data, Mar. Geod., 12, 287–302, 1988.Google Scholar
  22. Moritz, H., Advanced Physical Geodesy, Herbert Wichman Verlag, Karlsruhe, Germany, 1980.Google Scholar
  23. Mulhearn, P.J., The Tasman front: a study using satellite infrared imagery, J. Phys. Oceanogr., 17, 1148–1155, 1987.CrossRefGoogle Scholar
  24. Nilsson, C.S., and G.R. Cresswell, The formation and evolution of East Australian Current warm-core eddies, Prog. Oceanogr., 9, 133–183, 1981.CrossRefGoogle Scholar
  25. Park, Y-H., Evidence of semiannual baroclinic Rossby waves south of the Indian Ocean from satellite altimetry, C.R. Acad. Sci. Paris, 310, Ser. II, 919–926, 1990.Google Scholar
  26. Parke M.E., R.H. Steward, D.L. Farless, and D.E. Cartwright, On the choice of orbits for an altimeter satellite to study ocean circulation and tides, J. Geophys. Res., 92, (C11), 11693–11707, 1987.CrossRefGoogle Scholar
  27. Preisendorfer R.W. (1988) Principal Component Analysis in Meteorology and Oceanography, Developments in Atmospheric Science 17, Elsevier, 1988.Google Scholar
  28. Rintoul, S.R. South Atlantic interbasin exchange, J. Geophys. Res., 96, (C2), 2675–2692, 1991.Google Scholar
  29. Roden, G. I., Thermohaline fronts and baroclinic flow in the Argentine Basin during the austral spring of 1984, J. Geophys. Res. 91, 5075–5093, 1986.Google Scholar
  30. Semtner, A. J., and R. M. Chervin, A simulation of the global ocean circulation with resolved eddies, J. Geophys. Res., 93, 15502–15522, 1988.Google Scholar
  31. Stevens, D. P., On open boundary conditions for three-dimensional primitive equation ocean circulation models. Geophys. and Astrophys. Fluid Dyn., 51, 103–133, 1990.CrossRefGoogle Scholar
  32. Webb, D.J. et al. (The FRAM Group), An Eddy-resolving model of the Southern Ocean. EOS, Vol. 72, 15, 169, 174, 175, 1991.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Raymond C. V. Feron
    • 1
  1. 1.Institute for Marine and Atmospheric ResearchUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations