Advertisement

Theory of ocean tides with application to altimetry

  • David E. Cartwright
Lectures
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 50)

Keywords

Ocean Tide Satellite Altimetry Tide Constituent Harmonic Constant Tidal Dissipation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accad, Y. & C.L. Pekeris, Solution of the equations for the M2 and S2 tides in the world ocean from a knowledge of the tidal potential alone. Phil. Trans. R. Soc. London. A. 290, 235–266, 1978.CrossRefGoogle Scholar
  2. Bennett, A.F. & P.C. McIntosh, Open ocean modeling as an inverse problem: Tidal theory. J. Phys. Oceanog., 12, 1004–1018, 1982.CrossRefGoogle Scholar
  3. Cartwright, D.E., A unified analysis of tides and surges round N and E Britain. Phil. Trans. R. Soc. London. A. 263, 1–55, 1968.CrossRefGoogle Scholar
  4. Cartwright, D.E., Detection of tides from artificial satellites (Review).In: Tidal Hydrodynamics, (ed. Parker, B.B.-q.v.), 547–567, 1991Google Scholar
  5. Cartwright, D.E. & A.C. Edden, Corrected tables of tidal harmonics, Geophys. J. R. astr. Soc. 33, 253–264, 1973.Google Scholar
  6. Cartwright, D.E., A.C. Edden, R. Spencer & J.M. Vassie, The tides of the northeast Atlantic Ocean. Phil. Trans. R. Soc. London. A. 298, 87–139, 1980.CrossRefGoogle Scholar
  7. Cartwright, D.E. & R.D. Ray, New estimates of oceanic tidal dissipation from satellite altimetry. Geophys. Res. Lett. 16, 73–76, 1989.Google Scholar
  8. Cartwright, D.E. & R.D. Ray, Oceanic tides from Geosat altimetry. J. Geophys. Res., 95, C3, 3069–3090, 1990.CrossRefGoogle Scholar
  9. Cartwright, D.E. & R.D. Ray, Energetics of global ocean tides from Geosat altimetry. J. Geophys. Res., 96, C9, 16897–16912, 1991.Google Scholar
  10. Cartwright, D.E., R. Spencer, J.M. Vassie, & P.L. Woodworth, The tides of the Atlantic Ocean, 60°N−30°S. Phil. Trans. R. Soc. A. 324, 513–563, 1988.CrossRefGoogle Scholar
  11. Cartwright, D.E. & R.J. Tayler, New computations of the tide-generating potential. Geophys. J. R. astr. Soc. 23, 45–74, 1971.Google Scholar
  12. Cazenave, A.C., Tidal friction parameters from satellite observations. In: Tidal friction and the Earth's rotation-II, (ed. P. Brosche & J. Sündermann), 4–18, Springer-Verlag, 345 pp, 1982.Google Scholar
  13. Cazenave, A.C. & S. Daillet, Lunar tidal acceleration from Earth satellite orbit analysis. J. Geophys. Res., 86, B3, 1659–1663, 1981Google Scholar
  14. Darwin, G.H., The harmonic analysis of tidal observations. Pp. 49–118 of: British Association for the Advancement of Science-Report for 1883.Google Scholar
  15. Darwin, G.H., Tide. In: Encyclopedia Britannica, 11th edition, 26, 938–961, 1910.Google Scholar
  16. Dickey, J.O., J.G. Williams, & X.X. Newhall, The impact of Lunar Laser Ranging on geodynamics. (Abstract), EOS, Trans. Amer. Geophys. Union. 71, (17), 475, 1990.Google Scholar
  17. Doodson, A.T., The harmonic development of the tide-generating potential. Proc. R. Soc. London. A. 100, 305–329, 1921.CrossRefGoogle Scholar
  18. Doodson, A.T., Tides in oceans bounded by meridians, III—Semidiurnal tides. Phil. Trans. R. Soc. London. A. 237, 311–373, 1938.CrossRefGoogle Scholar
  19. Farrell, W.E., Deformation of the Earth by surface loads. Rev. Geophys. & Space Whys., 10, (3), 761–737, 1972.Google Scholar
  20. Gotlib, V.Yu., & B.A. Kagan. Resonance periods in the world ocean. Dokl. Akad. Nauk. SSSR. 252, 725–728, 1980.Google Scholar
  21. Groves, G.V. & R.W. Reynolds, An orthogonalised convolution method of tide prediction. J. Geophys. Res., 80, 4131–4138, 1975.CrossRefGoogle Scholar
  22. Hendershott, M.C., The effects of solid Earth deformation on global ocean tides. Geophys. J. R. astr. Soc. 29, 389–402, 1972.Google Scholar
  23. Jourdin, F., O. Francis, P. Vincent, P. Mazzega, Some results of heterogeneous data inversions for oceanic tides. J. Geophys. Res., 96, B 12, 20267–20288, 1991.CrossRefGoogle Scholar
  24. Kaula, W.M., Theory of satellite geodesy. Blaisdell, Waltham, Mass. 124pp, 1966.Google Scholar
  25. Lambeck, K., Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences. Phil. Trans. R. Soc. London, A. 287, 545–594, 1977.CrossRefGoogle Scholar
  26. Lambeck, K., The Earth's variable Rotation. Cambridge Univ. Press, 449pp, 1980.Google Scholar
  27. Longuet-Higgins, M.S., Planetary waves on a rotating sphere, I, II. Proc. R. Soc. London, A. 279, 446–473, and A,284, 40–54, 1964.Google Scholar
  28. Longuet-Higgins, M.S. & G.S. Pond, The free oscillations of a fluid on a hemisphere bounded by meridians of longitude. Phil. Trans. R. Soc. London. A. 266, 193–233, 1970.CrossRefGoogle Scholar
  29. Marchuk, G.I. & B.A. Kagan, Dynamics of ocean tides. Kluwer Academic Pubs, Dordrecht, 327 pp. 1989.Google Scholar
  30. Marsh, J.G. + 16 co-authors. The GEM-T2 gravitational model. J. Geophys. Res. 95, B 13, 22043–22071, 1990. (Ibid. Marsh, J.G. + 16 co-authors. The GEM-T2 gravitational model. J. Geophys. Res. Correction to Table 7, 96, B 10, 16651 1991.)Google Scholar
  31. Mazzega, P. The solar tides and the sun-synchronism of satellite altimetry. Geophys. Res. Lett. 16, (6), 507–510, 1989.Google Scholar
  32. Mazzega, P. & F. Jourdin, Inverting Seasat altimetry for tides in the northeast Atlantic; Preliminary results. In: Tidal Hydrodynamics, (ed. B.B. Parker-q.v.), 569–592, 1991.Google Scholar
  33. Melchior, P., The tides of the planet Earth. Pergamon Press, 2nd Edn., 641 pp, Oxford, 1983.Google Scholar
  34. Miles, J.W., On Laplace's tidal equations. J. Fluid Mech. 66, 241–260, 1974.CrossRefGoogle Scholar
  35. Miller, G.R. The flux of tidal energy out of the deep oceans. J. Geophys. Res., 71, (10), 2485–2489, 1966.Google Scholar
  36. Molodenskiy, S.M. Relation between Love numbers and load factors. Izvestiya, Earth Physics, (English edn. pub. Amer. Geophys. Union), 13, (3), 147–149, 1977.Google Scholar
  37. Morrison, L.V. & C.G. Ward, The analysis of the transits of Mercury. Mon. Not. Rastr. Soc., 173, 183–206, 1975.Google Scholar
  38. Munk, W.H. & D.E. Cartwright, Tidal spectroscopy and prediction. Phil. Trans. R. Soc. London. A. 259, 533–581, 1966.CrossRefGoogle Scholar
  39. Munk, W.H. & G.F. MacDonald, The rotation of the Earth; a geophysical discussion. Cambridge Univ. Press, 323pp, 1960.Google Scholar
  40. Munk, W., F. Snodgrass & M. Wimbush, Tides offshore; transition from California coastal to deep waters. Geophys. Fluid Dynamics, 1, 161–235, 1970.Google Scholar
  41. Mysak, L.A., On the theory of continental shelf waves. J. Mar. Res., 25, 205–227, 1967.Google Scholar
  42. Newhall, X.X., J.G. Williams & J.O. Dickey, Earth rotation from Lunar Laser Ranging, in: The Earth's rotation and reference frames for geodesy and geodynamics, (Ed. A.K. Babcock & G.A. Wilkins), Kluwer Academic Pubs., Dordrecht 1988.Google Scholar
  43. Pagiatakis, S.D., The response of a realistic earth to ocean tide loading. Geophys. J. Internat., 103, 541–560, 1990.CrossRefGoogle Scholar
  44. Parke, M.E., O1, P1, N2 models of the global ocean tide on an elastic Earth, plus surface potential and spherical harmonic decomps. for M2, S2, K1. Mar. Geod., 6, 35–81, 1982.CrossRefGoogle Scholar
  45. Parke, M.E. & M.C. Hendershott, M2, S2, K1 models of the global ocean tide on an elastic Earth. Mar. Geod., 3, 379–407, 1980.Google Scholar
  46. Parker, B.B. (Ed.) Tidal Hydrodynamics, John Wiley & Sons, New York, 883pp, 1991.Google Scholar
  47. Platzman, G.W., World ocean tides synthesized from Normal Modes. Science, 220, 602–604, 1983.CrossRefGoogle Scholar
  48. Platzman, G.W., Normal modes of the world ocean; III-A procedure for tidal synthesis; IV-Synthesis of diurnal and semidiurnal tides. J. Phys. Oceanog. 14 (10), 1521–1550, 1984a.CrossRefGoogle Scholar
  49. Platzman, G.W., Planetary energy balance for tidal dissipation. Rev. Geophys. & Space Physics, 22 (1), 73–84, 1984b.Google Scholar
  50. Platzman, G.W., G.A. Curtis, K.S. Hansen, R.D. Slater, Normal modes of the world ocean; II-Description of modes in the period range 8 to 80 hours. J. Phys. Oceanog. 11 (5), 579–603, 1981.CrossRefGoogle Scholar
  51. Poincaré, H., Leçons de Mécanique Céleste, Tome 3: Théorie des Marées. Gauthier-Villars, Paris, 469pp, 1910.Google Scholar
  52. Proudman, J., On the dynamic equations of the tides, I, II, III. Proc. London Math. Soc., 18, 1–68, 1917.CrossRefGoogle Scholar
  53. Proudman, J., On Laplace's differential equations for the tides. Proc. R. Soc. London, A, 179, 261–288, 1941.Google Scholar
  54. Sanchez, B.V., Proudman Functions and their application to tidal estimation in the world ocean. In: Tidal Hydrodynamics, (Ed. Parker, B.B.-q.v.), 27–39, 1991.Google Scholar
  55. Sanchez, B.V. & D.E. Cartwright, Tidal estimation in the Pacific with application to satellite altimetry. Mar. Geod., 12(2), 81–115, 1988.Google Scholar
  56. Sanchez, B.V., D.B. Rao & P.G. Wolfson, Objective analysis for tides in an enclosed basin. Mar. Geod., 9 (1), 71–91, 1985.Google Scholar
  57. Schwiderski, E.W., Ocean Tides; I: Global ocean tide equations, II: A hydrodynamic interpolation model. Mar. Geod., 3, 161–217, and 219–255, 1980a and b.CrossRefGoogle Scholar
  58. Schwiderski, E.W., Atlas of ocean tidal charts and maps, I: The semidiurnal principal lunar tide M2. Mar. Geod., 6, (3–4), 219–265, 1983.Google Scholar
  59. Stephenson, F.R. & L.V. Morrison, Long term changes in the rotation of the Earth: 700 BC to AD 1980. Phil. Trans. R. Soc. London, A, 313, 47–70, 1984.CrossRefGoogle Scholar
  60. Sündermann, J., The semidiurnal principal lunar tide M2 in the Bering Sea. Deutsche Hydrogr. Zeitschrift, 30, 91–101, 1977.CrossRefGoogle Scholar
  61. Taylor, G.I., Tidal friction in the Irish Sea. Phil. Trans. R. Soc. London. A. 220, 1–93, 1919.Google Scholar
  62. Thomson, W., On gravitational oscillations of rotating water. Proc. R. Soc. Edinburgh, 141–148. 1879.Google Scholar
  63. Vincent, P. & C. Le Provost, Semidiurnal tides in the northeast Atlantic from a finite element numerical model. J. Geophys. Res. 93, C1, 543–555, 1988.Google Scholar
  64. Wahr, J.M., Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys. J. Rastr. Soc. 64, 677–708, 1981.Google Scholar
  65. Webb, D.J., Tides and tidal friction in a hemispherical ocean centred on the equation. Geophys. J. R. astr. Soc. 61, 573–600, 1980.Google Scholar
  66. Wunsch, C., The long-period tides. Rev. Geophys. 5, 447–475, 1967.Google Scholar
  67. Zahel, W., A global hydrodynamical-numerical 1o model of the ocean tide. Ann. Geophys. 33, 31–40, 1977.Google Scholar
  68. Zahel, W., The influence of solid earth deformations on semidiurnal and diurnal oceanic tides. In: Tidal friction and the Earth's Rotation, (ed. J. Brosche & J. Sündermann), 98–124, Springer-Verlag, 243pp, 1978.Google Scholar
  69. Zahel, W., Modeling ocean tides with and without assimilating data. J. Geophys. Res. 96, B 12, 20379–20391, 1991.Google Scholar
  70. Zschau, J., Tidal friction in the solid Earth: Loading tide versus Body tide. In: Tidal friction and the Earth's rotation, (ed. J. Brosche & J. Sündermann), 62–93, Springer-Verlag, 243pp, 1978.Google Scholar
  71. Zschau, J., Tidal friction in the solid Earth: Constraints from the Chandler Wobble period. In: Space Geodesy & Geodynamics, (ed. A.J. Anderson & A. Cazenave), 315–344, Academic Press, New York, 490pp, 1986.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • David E. Cartwright
    • 1
  1. 1.PetersfieldEngland UK

Personalised recommendations