Physics of the ocean circulation

  • Carl Wunsch
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 50)


Rossby Wave Gulf Stream North Atlantic Ocean Subtropical Gyre Physical Oceanography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bainbridge, A. E., 1980. GEOSECS Atlantic Expedition. Vol. 2, Sections and Profiles. National Science Foundation, U. S. Government Printing Office, Washington DC, 198 pp.Google Scholar
  2. Baker, D. J., jr., 1981. Ocean instruments and experiment design. in Evolution of Physical Oceanography. Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, The MIT Press, Cambridge, 396–433.Google Scholar
  3. E. I. Balazs and B. C. Douglas, 1979. Geodetic leveling and the sealevel slope along the California coast. J. Geophys. REs., 84, 6195–6206.Google Scholar
  4. Barnett, T. P., 1990. Low frequency changes in sealevel and their possible causes. in, The Sea, Vol. 9, B. B. L. LeMehaute and D. M. Hanes, eds, Wiley-Interscience, New York, 841–867.Google Scholar
  5. Bauer, J. and J. D. Woods, 1984. Isopycnic Atlas of the North Atlantic Ocean. Tech. Rept. No. 132, Institut for Meereskunde und der Christian-Albrechts Universitat, Kiel, 173 pp.Google Scholar
  6. Baumgartner, A. and E. Reichel, 1975. The World Water Balance. Elsevier, Amsterdam, 179 pp.Google Scholar
  7. Berger, W. H. and L. D. Labeyrie, eds., 1987. Abrupt Climate Change. Evidence and Implications. NATO ASI Series, Vol 216. Reidel, Dordrecht, 425 pp.Google Scholar
  8. Born, G. H., B. D. Tapley, J. C. Ries and R. H. Stewart, 1986. Accurate measurement of mean sea level changes by altimetric satellites. J. Geophys. Res., 91, 11, 775–11, 782.Google Scholar
  9. Boyle, E. A., 1990. Quaternary deepwater paleoceanography. Science, 249, 863–870.CrossRefGoogle Scholar
  10. Broecker, W. S. D. Peteet and D. Rind, 1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315, 21–26.CrossRefGoogle Scholar
  11. Broecker, W. S., T. Takahashi and Y.-H. Li, 1976. Hydrography of the central Atlantic-I. The two-degree discontinuity. Deep-Sea Res., 23, 1083–1104.Google Scholar
  12. Bryan, F. O. and W. R. Holland, 1989. A high resolution simulation of the wind-and thermohaline-driven circulation in the North Atlantic Ocean. in, Parameterization of Small Scale Processes, Proceedings’ Aha Huliko'a, Hawaiian Winter Workshop, U. of Hawaii at Manoa, January 17–20, 1989, Hawaii Inst. of Geophys. Spec. Pub., P. Müller and D. Henderson, eds., 99–115.Google Scholar
  13. Bryden, H. L., D. H. Roemmich, and J. A. Church, 1991. Oceanic heat transport across 24oN in the Pacific. Deep-Sea Res., 37, 297–324.CrossRefGoogle Scholar
  14. Bryden, H. L., 1977. Geostrophic comparisons from moored measurements of current and temperature during the Mid-Ocean Dynamics Experiment. Deep-Sea Res., 24, 667–681.CrossRefGoogle Scholar
  15. Bryden, H. L., 1980. Geostrophic vorticity balance in midocean. J. Geophys. Res., 85, 2825–2828.CrossRefGoogle Scholar
  16. Chappellaz, J. M., D. Raynaud, Y. S. Korotkevich, and C. Lorios, 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature, 345, 127–131.CrossRefGoogle Scholar
  17. Davis, R. E., 1978. Estimating velocity from hydrographic data. J. Geophys. Res. 83, 5507–5509.CrossRefGoogle Scholar
  18. Deacon, M., 1979. Scientists and the Sea. 1650–1900. A Study of Marine Science 445 pp., Academic, LondonGoogle Scholar
  19. Defant, A., 1961. Physical Oceanography, Vol. 1. Pergamon, N.Y., 598 pp.Google Scholar
  20. Douglas, B. C., 1991. Global sea level rise. J. Geophys. Res., 96, 6981–6992.Google Scholar
  21. Drake, C. L., J. Imbrie, J. A. Knauss, and K. K. Turekian, 1978. Oceanography. Holt, Rinehart and Winston, New York, 447 pp.Google Scholar
  22. Ekman, V. W., 1905. On the influence of the earth's rotation on ocean-currents. Arkiv for Matematik, Astronomi och Fysik 2(11), 52 pp.Google Scholar
  23. Emery, K. O. and D. G. Aubrey, 1991. Sealevels, land levels and tide gauges. Springer-Verlag, New York, 237 pp.Google Scholar
  24. Fu, L., 1986. Mass, heat and freshwater fluxes in the South Indian Ocean. J. Phys. Oc., 16, 1683–1693.CrossRefGoogle Scholar
  25. Fukumori, I. and C. Wunsch, 1991. Efficient representation of the North Atlantic hydrographic and chemical distributions. Prog. in Oceanog., 27, 111–195.CrossRefGoogle Scholar
  26. Fukumori, I., F. Martel and C. Wunsch, 1991. The hydrography of the North Atlantic in the early 1980's. An atlas. Prog. in Oceanog., 27, 1–110.CrossRefGoogle Scholar
  27. Gill, A. E., 1982. Atmosphere-Ocean Dynamics. Academic Press, New York, 662 pp.Google Scholar
  28. Hall, M. M. and H. L. Bryden, 1982. Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29, 339–359.CrossRefGoogle Scholar
  29. Hamann, I. M. and J. H. Swift, 1991. A consistent inventory of water mass factors in the intermediate and deep Pacific Ocean derived from conservative tracers. Deep-Sea Res., 38 (Supplement. J. L. Reid Volume), S129–S170.Google Scholar
  30. Hastenrath, S., 1984. On meridional heat transports in the world ocean. J. Phys. Oc., 12, 922–927.CrossRefGoogle Scholar
  31. Heinmiller, R. H., 1983. Instruments and methods. in, Eddies in Marine Science, A. R. Robinson, ed., Springer-Verlag, Berlin, 542–567.Google Scholar
  32. Helland-Hansen, B. and F. Nansen, 1920. Temperature variations in the North Atlantic Ocean and in the atmosphere. Smithsonian Misc. Collect. 70: 4, 408pp.Google Scholar
  33. Holloway, G., 1986. Eddies, waves, circulation and mixing: statistical geofluid mechanics. Ann. Revs. Fl. Mech., 18, 91–147.CrossRefGoogle Scholar
  34. Isemer, H.-J. and L. Hasse, 1985. The Bunker Climate Atlas of the North Atlantic Ocean. Vol 1. Observations. Vol 2 Air-Sea Interactions. Springer-Verlag, Berlin, 218pp and 252pp.Google Scholar
  35. Isemer, H. J. Willebrand and L. Hasse, 1989. Fine adjustment of large scale air-sea energy flux parameterizations by direct estimates of ocean heat transport. J. Climate, 2, 1173–1184.CrossRefGoogle Scholar
  36. Kawase, M. and J. L. Sarmiento, 1986. Circulation and nutrients in middepth Atlantic waters. J. Geophys. Res., 91 9749–9770.Google Scholar
  37. Knapp, G. P. and H. Stommel, 1985. Hydrographic Data from R/V Oceanus Cruse 129. WHOI 85-38, Woods Hole Oceanographic Institution Technical Report, Woods Hole, MA, 107.Google Scholar
  38. Lambeck, K., 1988. Geophysical Geodesy. Oxford U. Press, New York, 718 pp.Google Scholar
  39. Levitus, S., 1982. Climatological Atlas of the World Ocean. NOAA Professional Paper 13, 173 pp.Google Scholar
  40. Longuet-Higgins, M. S., 1964. Planetary waves on a rotating sphere. Proc. Roy. Soc. A., 279, 446–473.CrossRefGoogle Scholar
  41. Mackas, D. L. K. L. Denman, and A. F. Bennett, 1987. Least squares multiple tracer analysis of water mass composition. J. Geophys. Res., 92, 2907–2918.Google Scholar
  42. Martel, F. and C. Wunsch, 1992. Combined inversion of hydrography, current meter data and altimetric elevations for the North Atlantic circulation. unpublished document.Google Scholar
  43. Martel, F. and C. Wunsch, 1993. The North Atlantic circulation in the early 1980's—an estimate from inversion of a finite difference model. J. Phys. Oc., in press.Google Scholar
  44. Maury, M. F., 1855. The Physical Geography of the Sea and Its Meteorology. Harper and Bros., New York. (reprinted by Harvard University Press, J. Leighly ed., 1963), 432pp.Google Scholar
  45. McWilliams, J. C. and G. R. Flierl, 1976. Optimal, quasi-goestrophic wave analysis of MODE array data. Deep-Sea Res., 23, 285–300.Google Scholar
  46. Meir, M. F., 1984. Contribution of small glaciers to global sea level. Science, 226, 1418–1421.CrossRefGoogle Scholar
  47. Millero, F. J., C.-T. Tung, A. Bradshaw and K. Schleicher, 1980. A new high pressure equation of state for seawater. Deep-Sea Res., 27A, 255–264.CrossRefGoogle Scholar
  48. MODE Group, The 1978. The Mid-ocean dynamics experiment. Deep-Sea Res. 25, 859–910.CrossRefGoogle Scholar
  49. Munk, W., 1950. On the wind-driven ocean circulation. J. of Meteor., 7, 79–93.Google Scholar
  50. Munk, W., 1981. Internal waves and small-scale processes. in Evolution of Physical Oceanography. Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, eds, The MIT Press, Cambridge, Ma, 264–291.Google Scholar
  51. Munk, W. H. and G. F. Carrier, 1950. The wind-driven circulation in ocean basins of various shapes. Tellus, 2, 158–167.Google Scholar
  52. Needler, G. T., 1978. The absolute velocity as a function of conserved measurable quantities. Prog. Oceanog., 14, 421–429.CrossRefGoogle Scholar
  53. Nerem, R. S., B. D. Tapley and C. K. Shum, 1990. Determination of the ocean circulation using Geosat altimetry. J. Geophys. Res., 95, 3163–3180.Google Scholar
  54. Oort, A. H. and T. H. Vonder Haar, 1976. On the observed annual cycle in the ocean-atmosphere heat balance over the northern hemisphere. J. Phys. Oc., 6, 781–800.CrossRefGoogle Scholar
  55. Owens, B., 1991. A statistical description of the mean circulation and eddy variability in the Northwestern Atlantic using SOFAR floats. Prog. Oceanog., 28, 257–303.CrossRefGoogle Scholar
  56. Pedlosky, J., 1987. Geophysical Fluid Dynamics, Second edition. Springer-Verlag, 710 pp.Google Scholar
  57. Philander, S. G., 1990. El Niño, La Niña, and the Southern Oscillation. Academic, San Diego, 289 pp.Google Scholar
  58. Phillips, N. A., 1963. Geostrophic motion. Revs. Geophys., 1, 123–176.Google Scholar
  59. Phillips, N. A., 1966. The equations of motion for a shallow rotating atmosphere and the “traditional approximation” J. Atm. Scis., 23, 626–628.CrossRefGoogle Scholar
  60. Pickard G. L. and W. Emery, 1982. Descriptive Physical Oceanography. An Introduction. 4th Edition. Pergamon, Oxford, 249 pp.Google Scholar
  61. Pond, S. and G. L. Pickard, 1983. Introductory Dynamical Oceanography, second edition. Pergamon, Oxford, 329pp.Google Scholar
  62. Reid, J. L., 1965. Intermediate Waters of the Pacific Ocean. Johns Hopkins Oceanographic Studies No. 2, Johns Hopkins U. Press, Baltimore, 85 pp.Google Scholar
  63. Reid, J. L., 1989. On the geostrophic circulation of the South Atlantic Ocean: flow patterns, tracers, and transports. Progress in Oceanog., 23, 149–244.CrossRefGoogle Scholar
  64. Rintoul, S., 1990. South Atlantic interbasin exchange. J. Geophys. Res., 96, 2675–2692.CrossRefGoogle Scholar
  65. Robinson, A. R., ed, 1983. Eddies in Marine Science. Springer-Verlag, Berlin, 609 pp.Google Scholar
  66. Roemmich, D., 1980. Estimation of meridional heat flux in the North Atlantic by inverse methods. J. Phys. Oc., 10, 1972–1983.CrossRefGoogle Scholar
  67. Roemmich, D. and C. Wunsch, 1985. Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res. 32, 619–664.CrossRefGoogle Scholar
  68. Schmitt, R., P. Bogden, and C. E. Dorman, 1989. Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oc., 19, 1208–1221.CrossRefGoogle Scholar
  69. Schmitz, W. J. Jr. and J. R. Luyten, 1991. Spectral time scales for mid-latitude eddies. J. Mar. Res., 49, 75–107.Google Scholar
  70. Schott, F. and H. Stommel, 1978. Beta spirals and absolute velocities in different oceans. Deep-Sea Res., 25, 961–1010.CrossRefGoogle Scholar
  71. Shum, C. K., R. A. Werner, D. T. Sandwell, B. H. Zhang, R. S. Nerem and B. D. Tapley, 1990. Variations of global mesoscale eddy energy observed from Geosat. J. Geophys. Res., 95, 17,865–17,876.Google Scholar
  72. Starr, V. P., 1968. Physics of Negative Viscosity Phenomena. Mc-Graw Hill, New York, 256 pp.Google Scholar
  73. Stommel, H., 1948. The westward intensification of wind-driven ocean currents. Trans. Am. Geophys. Un., 29, 202–206.Google Scholar
  74. Stommel, H., 1957. A survey of ocean current theory. Deep-Sea Res., 4, 149–184.CrossRefGoogle Scholar
  75. Stommel, H., 1965. The Gulf Stream: A Physical and Dynamical Description, 2nd ed. U. Calif. Press, Berkeley, 248pp.Google Scholar
  76. Stommel, H., 1984. The delicate interplay between wind-stress and buoyancy input in ocean circulation: the Goldsbrough variations. Tellus, 36A, 111–119.CrossRefGoogle Scholar
  77. Stommel, H. and F. Schott, 1977. The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep-Sea Res., 24, 325–329.Google Scholar
  78. Stommel, H., P. Niiler and D. Anati, 1978. Dynamic topography and recirculation of the North Atlantic Ocean. J. Mar. Res., 36, 449–468.Google Scholar
  79. Sturges, W., 1974. Sea level slope along continental boundaries. J. Geophys. Res., 79, 825–830.Google Scholar
  80. Sverdrup, H. U., M. W. Johnson and R. H. Fleming, 1942. The Oceans. Prentice-Hall, Englewood Cliffs, N. J., 1087 pp.Google Scholar
  81. Trenberth, K., J. G. Olson, and W. G. Large, 1989. A global ocean wind stress climatology based on ECMWF analysis. NCAR/TN-338TSTR, Aug. 1989, 93pp.Google Scholar
  82. Tushingham, A. M. and W. R. Peltier, 1991. Ice-3G: A new global model of late Pleistocene deglaciation based upon geophysical prediction aof post-glacial relative sealevel change. JGR, 96B, 4497–4523.Google Scholar
  83. Veronis, G., 1981, Dynamics of large-scale ocean circulation, in Evolution of Physical Oceanography. Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, eds., The MIT Press, Cambridge, Ma, 140–183.Google Scholar
  84. Weiss, R. F., J. L. Bullister, R. H. Gammon and M. J. Warner, 1985. Atmospheric chlorofluoromethanes in the deep equatorial Atlantic. Nature 314, 608–610.CrossRefGoogle Scholar
  85. Weyl, P. K., 1968. The role of the oceanis in climatic change: a theory of the ice ages. Meteor. Monographs, 8, 37–62.Google Scholar
  86. Woods, J. D., 1984. The upper ocean and air-sea interaction in global climate. in, The Global Climate, J. T. Houghton, ed., Cambridge U. Press, 141–187.Google Scholar
  87. Worthington, L. V., 1981. The water masses of the world ocean: some results of a fine-scale census, in, Evolution of Physical Oceanography. Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, eds., The MIT Press, Cambridge, 42–69.Google Scholar
  88. Wunsch, C., 1977. Determining the general circulation of the oceans: A preliminary discussion. Science, 196, 871–875.CrossRefGoogle Scholar
  89. Wunsch, C., 1978. The North Atlantic general circulation west of 50oW determined by inverse methods. Revs. Geophys. and Space Phys., 16, 583–620.Google Scholar
  90. Wunsch, C., 1980. Meridional heat flux of the North Atlantic Ocean. Proc. Nat. Acad. Scis., USA, 77, 5043–5047.CrossRefGoogle Scholar
  91. Wunsch, C., 1981. Low frequency variability of the sea. in Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, eds., The MIT Press, Cambridge, 342–374.Google Scholar
  92. Wunsch, C., 1989. Tracer inverse problems, in, Oceanic Circulation Models: Combining Data and Dynamics, D. L. T. Anderson and J. Willebrand, eds., Kluwer, Dordrecht, 1–77.Google Scholar
  93. Wunsch, C. and B. Grant, 1982. Towards the general circulation of the North Atlantic Ocean. Prog. in Oceanog., 11, 1–59.CrossRefGoogle Scholar
  94. Wunsch, C., D.-X. Hu, and B. Grant, 1983. Mass, heat, salt and nutrient fluxes in the South Pacific Ocean, J. Phys. Oc., 13, 725–753.CrossRefGoogle Scholar
  95. Wüst, G., 1935. Schichtung und Zirkulation des Atlantischen Ozeans. Die Stratosphare. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs-und Vermessungsschiff “Meteor” 1925–1927, 6: 1st Part,2, 180 pp. (reprinted as The Stratosphere of the Atlantic Ocean, W. J. Emery, ed., 1978, Amerind, New Delhi 112 pp)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Carl Wunsch
    • 1
  1. 1.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations