The mechanism of synpatic transmission

  • John C. Eccles
Conference paper
Part of the Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie book series (ERGEBPHYSIOL, volume 51)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheson, G. H.: Physiology of neuro-muscular junctions: chemical aspects. Fed. Proc.7, 447–457 (1948).PubMedGoogle Scholar
  2. Adrian, E. D.: Some recent work on inhibition. Brain47, 399–416 (1924).CrossRefGoogle Scholar
  3. —, andD. W. Bronk: The discharge of impulses in motor nerve fibres. Part II. The frequency of discharge in reflex and voluntary contractions. J. Physiol. (Lond.)67, 119–151 (1929).Google Scholar
  4. Adrian, R. H.: Potassium chloride movement and the membrane potential of frog muscle. J. Physiol. (Lond.)151, 154–185 (1960).Google Scholar
  5. Aitken J. T., andJ. E. Bridger. Neuron size and neuron population density in the lumbosacral region of the cat’s spinal cord. J. Anat. (Lond.)95, 38–53 (1961).Google Scholar
  6. Albe-Fessard, D.: Modifications de l’activité des organes électriques par des courants d’origine extérieure. Arch. Sci. physiol.5, 45–73 (1951).Google Scholar
  7. —, etP. Buser: Reception intracellular de l’activité d’un neurone des lobes électriques deTorpedo marmorata. C. R. Acad. Sci. (Paris)235, 1688 (1952).Google Scholar
  8. ——: Analyse microphysiologique de la transmission reflexe au niveau du lobe electrique de la torpille (Torpedo marmorata). J. Physiol. (Paris)46, 923–946 (1954).Google Scholar
  9. Alexandrowicz, J. S.: Muscle receptor organs in the abdomen ofHomarus vulgaris andPalinurus vulgaris. Quart. J. micr. Sci.92, 163–199 (1951).Google Scholar
  10. Alvord, E. C., andM. G. F. Fuortes: Reflex activity of extensor motor units following muscular afferent excitation. J. Physiol. (Lond.)122, 302–321 (1953).Google Scholar
  11. Amassian, V. E., andJ. L. de Vito: La transmission dans le noyau de Burdach. (Microphysiologie comparee des elements excitables. Coll. int. C.N.R.S.67, 353–393 (1957)Google Scholar
  12. Andersen, P.: Interhippocampal Impulses. III. Basal dendritic activation of CA3. Neurons. Acta physiol. scand.48, 209–230 (1960).PubMedCrossRefGoogle Scholar
  13. Anderson-Cedergren, E.: Ultrastructure of motor end plate sarcoplasmic components of mouse skeletal muscle fiber. J. ultrastruct. Res. Suppl.1 (1959).Google Scholar
  14. Araki, T., J. C. Eccles andM. Ito: Correlation of the inhibitory postsynaptic potential of motoneurones with the latency and time course of inhibition of monosynaptic reflexes. J. Physiol. (Lond.)154, 354–377 (1960).Google Scholar
  15. Araki, T., M. Ito andO. Oscarsson: Anionic permeability of the inhibitory postsynaptic membrane of motoneurones. Nature (Lond.)189, 65.Google Scholar
  16. —, andT. Otani: Response of single motoneurones to direct stimulation in toad’s spinal cord. J. Neurophysiol.18, 472–485 (1955).PubMedGoogle Scholar
  17. —: Accommodation and local response in motoneurones of toad’s spinal cord. Jap. J. Physiol.9, 69–83 (1959).CrossRefGoogle Scholar
  18. —— andT. Furukawa: The electrical activities of single motoneurones in toad’s spinal cord, recorded with intracellular electrodes. Jap. J. Physiol.3, 254–267 (1953).CrossRefGoogle Scholar
  19. Arvanitaki, A., andN. Chalazonitis: Activations du soma géant d’Aplysia par voie orthodrome et par voie antidrome (derivation endocytaire). Arch. Sci. physiol.10, 95–128 (1956).Google Scholar
  20. Axelsson, J., andS. Thesleff: A study of supersensitivity in denervated mammalian skeletal muscle. J. Physiol. (Lond.)147, 178–193 (1959).Google Scholar
  21. Barr, M. L.: Some observations on the morphology of the synapse in the cat’s spinal cord. J. Anat. (Lond.)74, 1–11 (1939).Google Scholar
  22. Barron, D. H., andB. H. C. Matthews: Conduction in the spinal cord. J. Physiol. (Lond.)84, 9P-10P (1935).Google Scholar
  23. ——: Electrotonus in ventral roots of the spinal cord. J. Physiol. (Lond.)87, 26P-27P (1936).Google Scholar
  24. ——: The interpretation of potential changes in the spinal cord. J. Physiol. (Lond.)92, 276–321 (1938).Google Scholar
  25. Bartelmez, G. W.: Mauthner’s cell and nucleus motorius tegmenti. J. comp. Neurol.25, 87–128 (1915).CrossRefGoogle Scholar
  26. Bazemore, A. W., K. A. C. Elliott andE. Florey: Isolation of factor I. J. Neurochem.1, 334–339 (1957).CrossRefGoogle Scholar
  27. Bernhard, C. G.: The cord dorsum potentials in relation to peripheral source of afferent stimulation. Cold. Spr. Harb. Symp. quant. Biol.17, 221–232 (1952).Google Scholar
  28. —: The spinal cord potentials in leads from the cord dorsum in relation to peripheral source of afferent stimulation. Acta physiol. scand.29, Suppl. 106, 1–29 (1953).Google Scholar
  29. —, andL. Widen: On the origin of the negative and positive spinal cord potentials evoked by stimulation of low threshold cutanous fibres. Acta physiol. scand.29, Suppl. 106, 42–54 (1953).Google Scholar
  30. Birks, R., H. E. Huxley andB. Katz: The fine structure of the neuromuscular junction of the frog. J. Physiol. (Lond.)150, 134–144 (1960).Google Scholar
  31. Birks, R., B. Katz andR. Miledi: Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J. Physiol. (Lond.)150, 145–168 (1960).Google Scholar
  32. —, andF. C. MacIntosh: Acetylcholine metabolism at nerve endings. Brit. med. Bull.13, 157–161 (1957).PubMedGoogle Scholar
  33. Bishop, G. H.: The dendrite: receptive pole of the neurone. Electroenceph. clin. Neurophysiol. Suppl.10, 12–21 (1958).Google Scholar
  34. Bishop, P. O.: Synaptic transmission. An analysis of the electrical activity of the lateral geniculate nucleus in the cat after optic nerve stimulation. Proc. roy. Soc. B141, 362–392 (1953).CrossRefGoogle Scholar
  35. —,W. Burke andW. R. Hayhow: Repetitive stimulation of optic nerve and lateral geniculate synapses. Exp. Neurol.1, 534–555 (1959).PubMedCrossRefGoogle Scholar
  36. Bodian, D.: The structure of the vertebrate synapse. A study of the axon endings on Mauthner’s cell and neighboring centers in the goldfish. J. comp. Neurol.68, 117–159 (1937).CrossRefGoogle Scholar
  37. —: Cytological aspects of synaptic function. Physiol. Rev.22, 146–169 (1942).Google Scholar
  38. —: Introductory survey of neurons. Cold. Spr. Harb. Symp. quant. Biol.17, 1–13 (1952).Google Scholar
  39. Boistel, J., andP. Fatt: Membrane permeability change during inhibitory transmitter action in crustacean muscle. J. Physiol. (Lond.)144, 176–191 (1958).Google Scholar
  40. Bonnet, V., andF. Bremer: Les potentiels synaptiques et la transmission nerveuse centrale. Arch. int. Physiol.60, 33–93 (1952).PubMedCrossRefGoogle Scholar
  41. Boyd, I. A., andA. R. Martin: Spontaneous subthreshold activity at mammalian neuromuscular junctions. J. Physiol. (Lond.)132, 61–73 (1956a).Google Scholar
  42. ——: The end-plate potential in mammalian muscle. J. Physiol. (Lond.)132, 74–91 (1956b).Google Scholar
  43. Bradley, K., D. M. Easton andJ. C. Eccles: An investigation of primary or direct inhibition. J. Physiol. (Lond.)122, 474–488 (1953).Google Scholar
  44. Branch, C. L. andA. R. Martin: Inhibition of Betz cell activity by thalamic and cortical stimulation. J. Neurophysiol.21, 380–390 (1958).PubMedGoogle Scholar
  45. Brock, L. G., J. S. Coombs andJ. C. Eccles: Action potentials of motoneurones with intracellular electrode. Proc. Univ. Otago med. Sch.29, 14–15 (1951).Google Scholar
  46. ———: The recording of potentials from motoneurones with an intra-cellular electrode. J. Physiol. (Lond.)117, 431–460 (1952).Google Scholar
  47. —, andR. M. Eccles: The membrane potentials during rest and activity of the ray electroplate. J. Physiol. (Lond.)142, 251–274 (1958).Google Scholar
  48. ——, andR. D. Keynes: The discharge of individual electroplates inRaia clavata. J. Physiol. (Lond.)122, 4–6P (1953).Google Scholar
  49. Brookhart, J. M., andE. Fadiga: Potential fields initiated during monosynaptic activation of frog motoneurones. J. Physiol. (Lond.)150, 633–655 (1960).Google Scholar
  50. Brooks, C. McC., andJ. C. Eccles: An electrical hypothesis of central inhibition. Nature (Lond.)159, 760–764 (1947a).CrossRefGoogle Scholar
  51. —: Electrical investigation of the monosynaptic pathway through the spinal cord. J. Neurophysiol.10, 251–274 (1947b).PubMedGoogle Scholar
  52. ——, andJ. L. Malcolm: Synaptic potentials of inhibited motoneurones. J. Neurophysiol.11, 417–430 (1948).PubMedGoogle Scholar
  53. —, andM. G. F. Fuortes: Potential changes in spinal cord following administration of strychnine. J. Neurophysiol.15, 257–267 (1952).PubMedGoogle Scholar
  54. —, andK. Koizumi: Origin of the dorsal root reflex. J. Neurophysiol.19, 61–74 (1956).Google Scholar
  55. Brooks, V. B.: An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J. Physiol. (Lond.)134, 264–277 (1956).Google Scholar
  56. D. R. Curtis andJ. C. Eccles: The action of tetanus toxin on the inhibition of motoneurones. J. Physiol. (Lond.)135, 655–672 (1957).Google Scholar
  57. Brown, G. L., andJ. C. Eccles: The action of a single vagal volley on the rhythm of the heart beat. J. Physiol. (Lond.)82, 211–241 (1934).Google Scholar
  58. —, andW. Feldberg: The acetylcholine metabolism of a sympathetic ganglion. J. Physiol. (Lond.)88, 265–283 (1936).Google Scholar
  59. Brown, K. T., andT. N. Wiesel: Intraretinal recording with micropipette electrodes in the intact cat eye. J. Physiol. (Lond.)149, 537–562 (1960).Google Scholar
  60. Brown, M. C., andP. B. C. Matthews: The effect on a muscle twitch of the backresponse of its motor nerve fibres. J. Physiol. (Lond.)150, 332–346 (1960).Google Scholar
  61. Bullock, T. H.: Functional organization of the giant fibre system ofLumbricus. J. Neurophysiol.8, 55–71 (1945).Google Scholar
  62. —: Properties of a single synapse in the stellate ganglion of squid. J. Neurophysiol.11, 343–364 (1948).PubMedGoogle Scholar
  63. —, andS. Hagiwara: Further study of the giant synapse in the stellate ganglion of squid. Biol. Bull.109, 341 (1955).Google Scholar
  64. ——: Intracellular recording from the giant synapse of the squid. J. gen. Physiol.40, 565–577 (1957).PubMedCrossRefGoogle Scholar
  65. Burgen, A. S. V., andS. W. Kuffler: Two inhibitory fibres forming synapses with a single nerve cell in the lobster. Nature (Lond.)180, 1490–1491 (1957).CrossRefGoogle Scholar
  66. —, andK. G. Terroux: The membrane resting and action potentials of the cat auricle. J. Physiol. (Lond.)119, 139–152 (1953).Google Scholar
  67. Burke, W.: Spontaneous potentials in slow muscle fibres of the frog. J. Physiol. (Lond.)135, 511–521 (1957).Google Scholar
  68. —, andB. L. Ginsborg: The electrical properties of the slow muscle fibre membrane. J. Physiol. (Lond.)132, 586–598 (1956a).Google Scholar
  69. ——: The action of the neuromuscular transmitter on the slow fibre membrane. J. Physiol. (Lond.)132, 599–610 (1956b).Google Scholar
  70. Burns, B. D., andW. D. M. Paton: Depolarization of the motor end-plate by decamethonium and acetylcholine. J. Physiol. (Lond.)115, 41–73 (1951).Google Scholar
  71. Burstock, G., andM. E. Holman: Autonomic nerve-smooth muscle transmission. Nature (Lond.)187, 951–952 (1960).CrossRefGoogle Scholar
  72. Castillo, J. del, andL. Engbaek: The nature of the neuromuscular block produced by magnesium. J. Physiol. (Lond.)124, 370–384 (1954).Google Scholar
  73. —, andB. Katz: The effect of magnesium on the activity of motor nerve endings. J. Physiol. (Lond.)124, 553–559 (1954a).Google Scholar
  74. ——: Quantal components of the end-plate potential. J. Physiol. (Lond.)124, 560–573 (1954b).Google Scholar
  75. ——: Statistical factors involved in neuromuscular facilitation and depression. J. Physiol. (Lond.)124, 574–585 (1954c).Google Scholar
  76. ——: Changes in end-plate activity produced by pre-synaptic polarization. J. Physiol. (Lond.)124, 586–604 (1954d).Google Scholar
  77. ——: The membrane change produced by the neuromuscular transmitter. J. Physiol. (Lond.)125, 546–565 (1954e).Google Scholar
  78. ——: On the localization of acetylcholine receptors. J. Physiol. (Lond.)128, 157–181 (1955a).Google Scholar
  79. ——: Local activity at a depolarized nerve-muscle junction. J. Physiol. (Lond.)128, 396–411 (1955b).Google Scholar
  80. ——: Production of membrane potential changes in the frog’s heart by inhibitory nerve impulses. Nature (Lond.)175, 1035 (1955c).CrossRefGoogle Scholar
  81. ——: Localization of active spots with the neuromuscular junction of the frog. J. Physiol. (Lond.)132, 630–649 (1956a).Google Scholar
  82. ——: Biophysical aspects of neuro-muscular transmission. Progr. Biophys. biophys. Chem.6, 121–170 (1956b).Google Scholar
  83. ——: A study of curare action with an electrical micromethod. Proc. roy. Soc. B146, 339–356 (1957a).CrossRefGoogle Scholar
  84. Castillo, J. del, andB. Katz: A comparison of acetylcholine and stable depolarizing agents. Proc. roy. Soc. B146, 362–368 (1957b).CrossRefGoogle Scholar
  85. ——: Interaction at end-plate receptors between different choline derivatives. Proc. roy. Soc. B146, 369–381 (1957c).CrossRefGoogle Scholar
  86. ——: Modifications de la membrane produites par des influx nerveux dans la région du pace-maker du cœur. Microphysiologie comparée des éléments excitables, Coll. int. C.N.R.S.67, 271–279 (1957d).Google Scholar
  87. —, andL. Stark: The effect of calcium ions on the motor end-plate potential. J. Physiol. (Lond.)116, 507–515 (1952).Google Scholar
  88. Clare, M., andG. H. Bishop: Properties of dendrites; apical dendrites of the cat cortex. Electroenceph. clin. Neurophysiol.7, 85–98 (1955).PubMedCrossRefGoogle Scholar
  89. Cole, K. S., andH. J. Curtis: Electric impedance of the squid giant axon during activity. J. gen. Physiol.22, 649–670 (1939).PubMedCrossRefGoogle Scholar
  90. Cole, W. V.: Structural variations of nerve endings in the striated muscles of the rat. J. comp. Neurol.108, 445–464 (1957).PubMedCrossRefGoogle Scholar
  91. Coombs, J. S., D. R. Curtis andJ. C. Eccles: The interpretation of spike potentials of motoneurones J. Physiol. (Lond.)139, 198–231 (1957a).Google Scholar
  92. ———: The generation of impulses in motoneurones. J. Physiol. (Lond.)139, 232–249 (1957b).Google Scholar
  93. ———: The electrical constants of the motoneurone membrane. J. Physiol. (Lond.)145, 505–528 (1959).Google Scholar
  94. —,J. C. Eccles andP. Fatt: The electrical properties of the motoneurone membrane. J. Physiol. (Lond.)130, 291–325 (1955a).Google Scholar
  95. ———: The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J. Physiol. (Lond.)130, 326–373 (1955b).Google Scholar
  96. ———: Excitatory synaptic action in motoneurones. J. Physiol. (Lond.)130, 374–395 (1955c).Google Scholar
  97. ———: The inhibitory suppression of reflex discharges from motoneurones. J. Physiol. (Lond.)130, 396–413 (1955d).Google Scholar
  98. Couteaux, R.: Morphological and cytochemical observations on the post-synaptic membrane at motor end-plates and ganglionic synapses. Exp. Cell. Res. Suppl.5, 294–322 (1958).Google Scholar
  99. Cragg, B. G., andL. H. Hamlyn: Action potentials of the pyramidal neurones in the hippocampus of the rabbit. J. Physiol. (Lond.)129, 608–627 (1955).Google Scholar
  100. Curtis, D. R.: Pharmacological investigations upon inhibition of spinal neurones. J. Physiol. (Lond.)145, 175–192 (1959).Google Scholar
  101. —: The assessment of the mode of action of neuron depressants. In: Nervous Inhibition; Proceedings of the second Friday Harbour Symposium. University of Washington, Seattle. Edit.E. Florey. Oxford: Pergamon Press 1961.Google Scholar
  102. —, andJ. C. Eccles: The time courses of excitatory and inhibitory synaptic actions. J. Physiol. (Lond.)145, 529–546 (1959).Google Scholar
  103. ——: Synaptic action during and after repetitive stimulation. J. Physiol. (Lond.)150, 374–398 (1960).Google Scholar
  104. ——, andA. Lundberg: Intracellular recording from cells in Clarke’s column. Acta physiol. scand.43, 303–314 (1958).PubMedCrossRefGoogle Scholar
  105. —, andR. M. Eccles: The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J. Physiol. (Lond.)141, 435–445 (1958a).Google Scholar
  106. ——: The effect of diffusional barriers upon the pharmacology of cells within the central nervous system. J. Physiol. (Lond.)141, 446–463 (1958b).Google Scholar
  107. —,J. W. Phillis andJ. C. Watkins: The depression of spinal neurones by γ-aminon-butyric acid and β-alanine. J. Physiol. (Lond.)146, 185–203 (1959).Google Scholar
  108. ———: The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. (Lond.)150, 656–682 (1960).Google Scholar
  109. Curtis, D. R., andJ. C. Watkins: Investigations upon the possible synaptic transmitter function of γ-aminobutyric acid and naturally occurring amino acids. From: Inhibition in the nervous system and γ-aminobutyric acid, pp. 424–444. Ed.E. Roberts. Oxford: Pergamon Press 1960a.Google Scholar
  110. ——: The excitation and depression of spinal neurones by structurally related amino acids. J. Neurochem.6, 117–141 (1960b).PubMedCrossRefGoogle Scholar
  111. Denny-Brown, D.: On the nature of postural reflexes. Proc. roy. Soc. B104, 253–301 (1929).Google Scholar
  112. Diamond, J., J. A. B. Gray andD. R. Inman: The relation between receptor potentials and the concentration of sodium ions. J. Physiol. (Lond.)142, 382–394 (1958).Google Scholar
  113. —— and M. Sato: The site of initiation of impulses in Pacinian corpuscles. J. Physiol. (Lond.)133, 54–67 (1956).Google Scholar
  114. Dudel, J., andS. W. Kuffler: A second mechanism of inhibition at the crayfish neuromuscular junction. Nature (Lond.)187, 247–248 (1960).CrossRefGoogle Scholar
  115. ——: The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J. Physiol. (Lond.)155, 514–529 (1961a).Google Scholar
  116. ——: Mechanism of facilitation at the crayfish neuromuscular junction. J. Physiol. (Lond.)155, 530–542 (1961b).Google Scholar
  117. ——: Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. (Lond.)155, 543–562 (1961c).Google Scholar
  118. Eccles, J. C.: Slow potential waves in the superior cervical ganglion. J. Physiol. (Lond.)85, 464–501 (1935).Google Scholar
  119. —: Synaptic and neuro-muscular transmission. Ergebn. Physiol.38, 339–444 (1936).Google Scholar
  120. —: Synaptic potentials and transmission in sympathetic ganglion. J. Physiol. (Lond.)101, 465–483 (1943).Google Scholar
  121. —: Synaptic potentials of motoneurones. J. Neurophysiol.9, 87–120 (1946).PubMedGoogle Scholar
  122. —: The neurophysiological basis of mind: The principles of neurophysiology. Oxford: Clarendon Press 1953.Google Scholar
  123. —: The physiology of nerve cells. Baltimore: Johns Hopkins Press 1957.Google Scholar
  124. —: The behaviour of nerve cells. Ciba Symp. „Neurological Basis of Behaviour”, pp. 28–47. London: J. & A. Churchill Ltd. 1958.Google Scholar
  125. —: Excitatory and inhibitory synaptic action. Ann. N.Y. Acad. Sci.81, 247–264 (1959).PubMedCrossRefGoogle Scholar
  126. —: The nature of central inhibition. Proc. roy. Soc. B153, 445–476 (1961a).CrossRefGoogle Scholar
  127. —: The synaptic mechanism of postsynaptic inhibition. In: Nervous Inhibition. Proceedings of the second Friday Harbour Symposium, University of Washington, Seattle. Ed.E. Florey. Oxford: Pergamon Press 1961b.Google Scholar
  128. Eccles, J. C.: Membrane time constants of cat motoneurones and time courses of synaptic action. Exp. Neurol. (1961 c).Google Scholar
  129. —,R. M. Eccles andP. Fatt: Pharmacological investigations on a central synapse operated by acetylcholine. J. Physiol. (Lond.)131, 154–169 (1956).Google Scholar
  130. Eccles, J. C. R. M. Eccles, A. Iggo and M. Ito: Distribution of recurrent inhibition among motoneurones. J. Physiol. (Lond.) (1961, in press).Google Scholar
  131. Eccles, J. C., R. M. Eccles, A. Iggo andA. Lundberg: Electrophysiological investigations on Renshaw cells. J. Physiol. (Lond.) (1961, in press).Google Scholar
  132. Eccles, J. C., A. Lundberg and M. Ito: Relative contributions of potassium and chloride ionic conductances to the inhibitory postsynaptic potential. J. Physiol. (1961, in course of publication).Google Scholar
  133. —— andA. Lundberg: Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley. J. Physiol. (Lond.)136, 527–546 (1957a).Google Scholar
  134. ———: The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J. Physiol. (Lond.)137, 22–50 (1957b).Google Scholar
  135. ———: Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. J. Physiol. (Lond.)138, 227–252 (1957c).Google Scholar
  136. ———: The action potentials of the alpha motoneurones supplying fast and slow muscles. J. Physiol. (Lond.)142, 275–291 (1958).Google Scholar
  137. Eccles, J. C., R. M. Eccles andA. Lundberg: Types of neurone in and around the intermediate nucleus of the lumbosacral cord. J. Physiol. (Lond.)154, 89–114 (1960).Google Scholar
  138. Eccles, J. C., R. M. Eccles andF. Magni: Presynaptic inhibition in the spinal cord. J. Physiol. (Lond.)154, 28P (1960).Google Scholar
  139. Eccles, J. C., R. M. Eccles andF. Magni Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J. Physiol. (Lond.) (1961, in course of publication).Google Scholar
  140. —,P. Fatt andK. Koketsu: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. (Lond.)126, 524–562 (1954).Google Scholar
  141. —— andS. Landgren: The central pathway for the direct inhibitory action of impulses in the largest afferent nerve fibres to muscle. J. Neurophysiol.19, 75–98 (1956).PubMedGoogle Scholar
  142. ——— andG. J. Winsbury: Spinal cord potentials generated by volleys in the large muscle afferent fibres. J. Physiol. (Lond.)125, 590–606 (1954).Google Scholar
  143. —,R. Granit andJ. Z. Young: Impulses in the giant nerve fibres of earthworms. J. Physiol. (Lond.)77, 23P-24P (1932).Google Scholar
  144. —, andH. E. Hoff: The rhythmic discharge of motoneurones. Proc. roy. Soc. B110, 483–514 (1932).CrossRefGoogle Scholar
  145. Eccles, J. C., J. I. Hubbard andO. Oscarsson: Intracellular recording from cells of the ventral spino-cerebellar tract. J. Physiol. (Lond.) (1961). Depolarization of central terminals of group I afferent fibres from muscle.Google Scholar
  146. —, andJ. C. Jaeger: The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. roy. Soc. B148, 38–56 (1958).CrossRefGoogle Scholar
  147. —,B. Katz andS. W. Kuffler: Nature of the „endplate potential” in curarized muscle. J. Neurophysiol.4, 362–387 (1941).Google Scholar
  148. —,W. Kozak andF. Magni: Dorsal root reflexes in muscle afferent fibres. J. Physiol. (Lond.)153, 48P-49P (1960).Google Scholar
  149. —, andK. Krnjević: Potential changes recorded inside primary afferent fibres within the spinal cord. J. Physiol. (Lond.)149, 250–273 (1959a).Google Scholar
  150. ——: Presynaptic changes associated with post-tetanic potentiation in the spinal cord. J. Physiol. (Lond.)149, 274–287 (1959b).Google Scholar
  151. —— andR. Miledi: Delayed effects of peripheral severance of afferent nerve fibres on the efficacy of their central synapses. J. Physiol. (Lond.)145, 204–220 (1959).Google Scholar
  152. —,B. Libet andR. R. Young: The behavior of chromatolysed motoneurones studied by intracellular recording. J. Physiol. (Lond.)143, 11–40 (1958).Google Scholar
  153. —, andW. V. Liley: Factors controlling the liberation of acetycholine at the neruomuscular junction. Amer. J. phys. Med.38, 96–103 (1959).PubMedGoogle Scholar
  154. —, andW. V. MacFarlane: Actions of anticholinesterases on endplate potential of frog muscle. J. Neurophysiol.12, 59–80 (1949).PubMedGoogle Scholar
  155. Eccles, J. C., F. Magni andW. D. Willis: Depolarization of central terminals of group 1 afferent fibres from muscle. J. Physiol. (Lond.) (1961, in course of publication).Google Scholar
  156. —, andW. J. Malcolm: Dorsal root potentials of the spinal cord. J. Neurophysiol.9, 139–160 (1946).PubMedGoogle Scholar
  157. —, andW. J. O’Connor: Action potentials evoked by indirect stimulation of curarized muscle. J. Physiol. (Lond.)94, 7P-8P (1938).Google Scholar
  158. ——: Responses which nerve impulses evoke in mammalian striated muscles. J. Physiol. (Lond.)97, 44–102 (1939).Google Scholar
  159. —, andJ. J. Pritchard: The action potential of motoneurones. J. Physiol. (Lond.)89, 43–45 (1937).Google Scholar
  160. —, andW. Rall: Effects induced in a monosynaptic reflex path by its activation. J. Neurophysiol.14, 353–376 (1951).PubMedGoogle Scholar
  161. —, andC. S. Sherrington: Numbers and contraction values of individual motor units examined in some muscles of the limb. Proc. roy. Soc. B106, 326–357 (1930).CrossRefGoogle Scholar
  162. Eccles, R. M.: Intracellular potentials recorded from a mammalian sympathetic ganglion. J. Physiol. (Lond.)130, 572–584 (1955).Google Scholar
  163. Eccles, R. M., andA. Lundberg: The synaptic linkage of „direct” inhibition. Acta physiol. scand.43, 204–215 (1958).PubMedCrossRefGoogle Scholar
  164. ——: Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch. ital. Biol.97, 199–221 (1959).Google Scholar
  165. Edwards, C., andS. Hagiwara: Potassium ions and the inhibitory process in the crayfish stretch receptor. J. gen. Physiol.43, 315–321 (1959).PubMedCrossRefGoogle Scholar
  166. —, andS. W. Kuffler: Inhibitory mechanisms of gamma aminobutyric acid on an isolated nerve cell. Fed. Proc.16, 34 (1957).Google Scholar
  167. —: The blocking effect of γ-aminobutyric acid (GABA) and the action of related compounds on single nerve cells. J. Neurochem.4, 19–30 (1959).PubMedCrossRefGoogle Scholar
  168. —, andD. Ottoson: The site of impulse initiation in a nerve cell a crustacean stretch receptor. J. Physiol. (Lond.)143, 138–148 (1958).Google Scholar
  169. Eide, E., A. Lundberg andP. Voorhoeve: The synaptic delay at inhibitory synapses. J. Physiol. (Lond.)154, 30P (1960).Google Scholar
  170. Eisenman, G., andD. O. Rudin: The compound origin of potential in a stimulated dorsal root. J. gen. Physiol.37, 781–793 (1954).PubMedCrossRefGoogle Scholar
  171. Elliott, K. A. C., andE. Florey: Factor I — Inhibitory factor from brain. Assay. Conditions in brain. Simulating and antagonising substances. J. Neurochem.1, 181–191 (1956).PubMedCrossRefGoogle Scholar
  172. Emmelin, N., andF. C. MacIntosh: The release of acetylcholine from perfused sympathetic ganglia and skeletal muscles. J. Physiol. (Lond.)131, 477–496 (1956).Google Scholar
  173. Euler, U. S. v.: Autonomic neuroeffector transmission. In Handbook of Physiology, Sect. 1, Neurophysiology, Vol. 1, Chap. VII, p. 215–237. Ed.J. Field Washington: American Physiological Society 1959.Google Scholar
  174. Evarts, E. V., andJ. R. Hughes: Relation of posttetanic potentiation to subnormality of lateral geniculate potentials. Amer. J. Physiol.188, 238–244 (1957).PubMedGoogle Scholar
  175. Eyzaguirre, C., andS. W. Kuffler: Processes of excitation in the dendrites and in the soma of isolated sensory nerve cells of the lobster and crayfish. J. gen. Physiol.39, 87–119 (1955a).PubMedCrossRefGoogle Scholar
  176. ——: Further study of soma, dendrite and axon excitation in single neurons. J. gen. Physiol.39, 121–153 (1955b).PubMedCrossRefGoogle Scholar
  177. Fadiga, E., andJ. M. Brookhart: Monosynaptic activation of different portions of the motor neuron membrane. Amer. J. Physiol.198, 693–703 (1960).PubMedGoogle Scholar
  178. Fatt, P.: Biophysics of junctional transmission. Physiol. Rev.34, 674–710 (1954).PubMedGoogle Scholar
  179. —: Electric potentials occurring around a neurone during its antidromic activation. J. Neurophysiol.20, 27–60 (1957a).PubMedGoogle Scholar
  180. —: Sequence of events in synaptic activation of a motoneurone. J. Neurophysiol.20, 61–80 (1957b).PubMedGoogle Scholar
  181. —: Skeletal neuromuscular transmission. In Handbook of Physiology, Sec. 1, Neurophysiology, Vol. 1, Chap. VI. pp. 199–213. Ed.J. Field. Washington: American Physiological Society 1959.Google Scholar
  182. Fatt, P.: Alterations produced in the post-junctional cell by the inhibitory transmitter. In Inhibition in the Nervous System and Gamma-Aminobutyric Acid, pp. 104–114. Edit.E. Roberts. New York and Oxford 1960.Google Scholar
  183. —, andB. Katz: Membrane potential changes at the motor end-plate. J. Physiol. (Lond.)111, 46P-47P (1950).Google Scholar
  184. ——: An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. (Lond.)115, 320–369 (1951).Google Scholar
  185. ——: The electric activity of the motor end-plate. Proc. roy. Soc. B140, 183–186 (1952a).CrossRefGoogle Scholar
  186. ——: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.)117, 109–128 (1952b).Google Scholar
  187. ——: Distributed “end-plate potentials” of crustacean muscle fibres J. exp. Biol.30, 433–439 (1953a).Google Scholar
  188. ——: The effect of inhibitory nerve impulses on a crustacean muscle fibre. J. Physiol. (Lond.)121, 374–389 (1953b).Google Scholar
  189. Feldberg, W.: Central and sensory transmission. Pharmacol. Rev.6, 85–93 (1954).PubMedGoogle Scholar
  190. Feldberg, V.: Acetylcholine. From: Metabolism of the nervous system, p. 493–509. Ed.D. Richter. London: Pergamon Press. Proceedings of the 2nd Int. Neurochem. Symp. Aaarhus, 1956.Google Scholar
  191. Feng, T. P.: Studies on the neuro-muscular junction. XVIII. The local potentials around N-M junctions induced by single and multiple volleys. Clin. J. Physiol.15, 367–404 (1940).Google Scholar
  192. Fessard, A.: Les processus de base de l’inhibition centrale. XXI. Internat. Congr. of Physiol. Sci. — Symposia and Special Lectures, 1959, p. 40–46.Google Scholar
  193. —: Vue d’ensemble sur les mecanismes de l’inhibition centrale. C. R. Soc. Biol. (Paris)154, 5–10 (1960).Google Scholar
  194. —, andB. H. C. Matthews: Unitary synaptic potentials. J. Physiol. (Lond.)95, 39P-41P (1939).Google Scholar
  195. —, andJ. Posternak: Les mécanismes élémentaires de la transmission synaptique. J. Physiol. Path. gén.42, 319–445 (1950).Google Scholar
  196. —, andL. Tauc: Comparaison entre la dissipation des potentiels postsynaptiques et électrotoniques dans le soma neuronique de l’Aplysie. J. Physiol. (Paris)49, 162–164 (1957).Google Scholar
  197. Florey, Elizabeth, andE. Florey: Microanatomy of the abdominal stretch receptors of the crayfish (Astacus fluviatilis I.) J. gen. Physiol.39, 69–85 (1955).PubMedCrossRefGoogle Scholar
  198. Florey, E.: An inhibitory and an excitatory factor of mammalian central nervous system, and their action on a single sensory neuron. Arch. int. Physiol.62, 33–53 (1954).PubMedCrossRefGoogle Scholar
  199. —: Physiological evidence for naturally occurring inhibitory substances. From: Inhibition in the Nervous System and γ-Aminobutyric Acid, p. 72–84. Edit.E. Roberts. Oxford: Pergamon Press 1960.Google Scholar
  200. —, andH. McLennan: Effects of an inhibitory factor (Factor I) from brain on central synaptic transmission. J. Physiol. (Lond.)130, 446–455 (1955).Google Scholar
  201. ——: The effects of factor I and of gamma-amino-butyric acid on smooth muscle preparations. J. Physiol. (Lond.)145, 66–76 (1959).Google Scholar
  202. Forbes, A.: The interpretation of spinal reflexes in terms of present knowledge of nerve conduction. Physiol. Rev.2, 361–414 (1922).Google Scholar
  203. Frank, K.: Basic mechanisms of synaptic transmission in the central nervous system. I.R.E. Trans. Med. Electron. ME-6, 85–88 (1959).Google Scholar
  204. —, andM. G. F. Fuortes: Potentials recorded from the spinal cord with microelectrodes. J. Physiol. (Lond.)130, 625–654 (1955).Google Scholar
  205. ——: Unitary activity of spinal interneurones of cats. J. Physiol. (Lond.)131, 425–435, (1956a).Google Scholar
  206. ——: Stimulation of spinal motoneurones with intracellular electrodes. J. Physiol. (Lond.)134, 451–470 (1956b).Google Scholar
  207. ——: Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc.16, 39–40 (1957).Google Scholar
  208. ——: Accommodation of spinal motoneurones of cats. Arch. ital. Biol.98, 165–170 (1960).Google Scholar
  209. Freygang, W. H.: An analysis of extracellular potentials from single neurons in the lateral geniculate nucleus of the cat. J. gen. Physiol.41, 543–564 (1958).PubMedCrossRefGoogle Scholar
  210. —, andK. Frank: Extracellular potentials from single spinal motoneurons. J. gen. Physiol.42, 749–760 (1959).PubMedCrossRefGoogle Scholar
  211. Fuortes, M. G. F.: Direct current stimulation of motoneurones. J. Physiol. (Lond.)126, 494–506 (1954).Google Scholar
  212. —: Motoneurone excitability during rhythmical reflex firing. Arch. ital. Biol.95, 20–30 (1957).Google Scholar
  213. —: Initiation of impulses in visual cells ofLimulus. J. Physiol. (Lond.)148, 14–28 (1959).Google Scholar
  214. —,K. Frank andM. C. Becker: Steps in the production of motoneuron spikes. J. gen. Physiol.40, 735–752 (1957).CrossRefGoogle Scholar
  215. Furshpan, E. J., andD. D. Potter: Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.)145, 289–325 (1959a).Google Scholar
  216. ——: Slow post-synaptic potentials recorded from the giant motor fibre of the crayfish. J. Physiol. (Lond.)145, 326–335 (1959b).Google Scholar
  217. Furukawa, T., andA. Furukawa: Effects of methyl- and ethyl-derivatives of NH4+ on the neuromuscular junction. Jap. J. Physiol.9, 130–142 (1959).CrossRefGoogle Scholar
  218. —,T. Takagi andT. Sugihara: Depolarization of end-plates by acetylcholine externally applied. Jap. J. Physiol.6, 98–107 (1956).CrossRefGoogle Scholar
  219. Gasser, H. S.: The control of excitation in the nervous system. Harv. Lect.32, 169–193 (1937).Google Scholar
  220. Ginsborg, B. L.: Spontaneous activity in muscle fibres of the chick. J. Physiol. (Lond.)150, 707–717 (1960).Google Scholar
  221. Göpfert, H., andH. Schaefer: Über den direkt und indirekt erregten Aktionsstrom und die Funktion der motorischen Endplatte. Pflügers Arch. ges. Physiol.239, 597–619 (1938).CrossRefGoogle Scholar
  222. Granit, R.: Receptors and sensory preception. New Haven: Yale University Press 1955.Google Scholar
  223. —,H. D. Henatsch andG. Steg: Tonic and phasic ventral horn cells differentiated by post-tetanic potentiation in cat extensors. Acta physiol. scand.37, 114–126 (1956).PubMedCrossRefGoogle Scholar
  224. —, andC. G. Phillips: Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J. Physiol. (Lond.)133, 520–547 (1956).Google Scholar
  225. ——,S. Skoglund andC. Steg: Differentiation of tonic from phasic alpha ventral horn cells by stretch, pinna and crossed extensor reflexes. J. Neurophysiol.20, 470–481 (1957).PubMedGoogle Scholar
  226. Gray, E. G.: Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J. Anat. (Lond.)93, 420–433 (1959).Google Scholar
  227. —, andV. P. Whittaker: The isolation of synaptic vesicles from the central nervous system. J. Physiol. (Lond.)153, 35P-37P (1960).Google Scholar
  228. Gray, J. A. B.: Initiation of impulses at receptors. In Handbook of Physiology, Sect. 1, Neurophysiology, Vol. 1, Chap. IV, pp. 123–145. Ed.J. Field. Washington: American Physiological Society 1959.Google Scholar
  229. Grundfest, H.: Excitation triggers in post-junctional cells. In: Physiological triggers and discontinuous rate processes. Ed. byT. H. Bullock. Washington, D.C.: American Physiological Society 1957a.Google Scholar
  230. —: Électrical inexcitability of synapses and some consequences in the central nervous system. Physiol. Rev.37, 337–361 (1957b).PubMedGoogle Scholar
  231. —: Electrophysiology and pharmacology of dendrites. Electroenceph. clin. Neurophysiol., Suppl.10, 22–41 (1958).Google Scholar
  232. —: Synaptic and ephatic transmission. In Handbook of Physiology, Sect. 1, Neurophysiology, Vol. 1, Chap. V, pp. 147–197. Ed.J. Field. Washington: American Physiological Society 1959.Google Scholar
  233. —: Central inhibition and its mechanisms. From: Inhibition in the nervous system and γ-aminobutyric acid, pp. 47–65. Ed.E. Roberts. Oxford: Pergamon Press 1960a.Google Scholar
  234. —: Biochemical and physiological approaches to the functioning of neurons. From: Inhibition in the nervous system and γ-aminobutyric acid, pp. 344–353. Edit.E. Roberts Oxford Pergamon Press 1960b.Google Scholar
  235. —,J. P. Reuben andW. H. Rickles: The electrophysiology and pharmacology of lobster neuromuscular synapses. J. gen. Physiol.42, 1301–1323 (1959).PubMedCrossRefGoogle Scholar
  236. Haapanen, L., G. M. Kolmodin andC. R. Skoglund: Membrane and action potentials of spinal interneurones in the cat. Acta physiol. scand.43, 315–348 (1958).PubMedCrossRefGoogle Scholar
  237. Hagbarth, K. E. andJ. Fex: Centrifugal influences on single unit activity in spinal sensory paths. J. Neurophysiol.22, 321–338 (1959).PubMedGoogle Scholar
  238. —, andD. I. B. Kerr: Central influences on spinal afferent conduction. J. Neurophysiol.17, 295–307 (1954).PubMedGoogle Scholar
  239. Haggar, R. A., andM. L. Barr: Quantitative data on the size of synaptic end-bulbs in the cat’s spinal cord. J. comp. Neurol.93, 17–35 (1950).PubMedCrossRefGoogle Scholar
  240. Hagiwara, S.: Synaptic potential in the motor giant axon of the crayfish. J. gen. Physiol.41, 1119–1128 (1958).PubMedCrossRefGoogle Scholar
  241. Hagiwara, S., andT. H. Bullock: Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J. cell. comp. Physiol.50, 25–47 (1957).CrossRefGoogle Scholar
  242. —,K. Kusano andS. Saito: Membrane changes in crayfish stretch receptor neuron during synaptic inhibition and under action of gamma-aminobutyric acid. J. Neurophysiol.23, 505–515 (1960).PubMedGoogle Scholar
  243. —, andN. Saito: Mechanism of action potential production in the nerve cell of a Puffer. Proc. Japan Acad.33, 682–685 (1957).Google Scholar
  244. ——: Membrane potential change and membrane current in supramedullary nerve cell of Puffer. J. Neurophysiol.22, 204–221 (1959).PubMedGoogle Scholar
  245. —, andI. Tasaki: A study of the mechanism of impulse transmission across the giant synapse of the squid. J. Physiol. (Lond.)143, 114–137 (1958).Google Scholar
  246. —,A. Watanabe andN. Saito: Potential changes in syncytial neurons of lobster cardiac ganglion. J. Neurophysiol.22, 554–572 (1959).PubMedGoogle Scholar
  247. Harreveld, A. van, andC. A. G. Wiersma: The triple innervation of crayfish muscle and its function in contraction and inhibition. J. exp. Biol.14, 448–461 (1937).Google Scholar
  248. Harris, E. J., andO. F. Hutter: The action of acetylcholine on the movements of potassium ions in the sinus venosus of the heart. J. Physiol. (Lond.)133, 58P-59P (1956).Google Scholar
  249. Hartline, H. K., H. G. Wagner andE. F. MacNichol: The peripheral origin of nervous activity in the visual system. Cold Spr. Harb. Symp. quant. Biol.,17, 125–141 (1952).Google Scholar
  250. Harvey, A. M., andF. C. MacIntosh: Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.)97, 408–416 (1940).Google Scholar
  251. Hebb, C. O.: Biochemical evidence for the neural function of acetylcholine. Physiol. Rev.37, 196–220 (1957).PubMedGoogle Scholar
  252. —: Chemical agents of the nervous system. Int. Rev. Neurobiol.1, 165–193 (1959).PubMedCrossRefGoogle Scholar
  253. —, andB. N. Smallman: Intracellular distribution of choline acetylase. J. Physiol. (Lond.)134, 385–392 (1956).Google Scholar
  254. —, andG. M. H. Waites: Choline acetylase in antero- and retro-grade degeneration of a cholinergic nerve. J. Physiol. (Lond.)132, 667–671 (1956).Google Scholar
  255. —, andV. P. Whittaker: Intracellular distributions of acetylcholine and choline acetylase. J. Physiol. (Lond.)142, 187–196 (1958).Google Scholar
  256. Hern, J. E. C., S. Landgren andC. G. Phillips: Corticofugal discharges evoked by surface-anodal and surface-cathodal stimulation of the baboon’s brain. J. Physiol. (Lond.)154, 70P-77P (1960).Google Scholar
  257. Hodgkin, A. L.: The local electric changes associated with repetitive action in a nonmedullated axon. J. Physiol. (Lond.)107, 165–181 (1948).Google Scholar
  258. —: The ionic basis of electrical activity in nerve and muscle. Biol. Rev.26, 339–409 (1951).CrossRefGoogle Scholar
  259. —: Ionic movements and electrical activity in giant nerve fibres. Proc. roy. Soc. B148, 1–37 (1958).CrossRefGoogle Scholar
  260. —, andP. Horowicz: The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. (Lond.)148, 127–160 (1959).Google Scholar
  261. —, andA. F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952).Google Scholar
  262. Hoffmann, P.: Über die doppelte Innervation der Krebsmuskeln. Zugleich ein Beitrag zur Kenntnis nervöser Hemmungen. Z. Biol.63, 411 (1914).Google Scholar
  263. Holmqvist, B., A. Lundberg andO. Oscarsson: Functional organisation of the dorsal spino-cerebellar tract in the cat. V. Further experiments on convergence of excitatory and inhibitory actions. Acta physiol. scand.38, 76–90 (1956).PubMedGoogle Scholar
  264. Honour, A. J., andH. McLennan: The effects of γ-aminobutyric acid and other compounds on structures of the mammalian nervous system which are inhibited by Factor I. J. Physiol. (Lond.)150, 306–318 (1960).Google Scholar
  265. Horstmann, E., u.H. Meves: Die Feinstruktur des molekularen Rindengraues und ihre physiologische Bedeutung. Z. Zellforsch.49, 569–604 (1959).CrossRefGoogle Scholar
  266. Howland, B., J. Y. Lettvin, W. S. McCulloch, W. Pitts andP. D. Wall: Reflex inhibition by dorsal root interaction. J. Neurophysiol.18, 1–17 (1955).PubMedGoogle Scholar
  267. Hoyle, G., andC. A. G. Wiersma: Excitation at neuromuscular junctions in crustacea. J. Physiol. (Lond.)143, 403–425 (1958a).Google Scholar
  268. ——: Inhibition at neuromuscular junctions in crustacea. J. Physiol. (Lond.)143, 426–440 (1958b).Google Scholar
  269. Hubbard, J. I.: Post-activation changes at the mammalian neuromuscular junction. Nature (Lond.)184, 1945 (1959).CrossRefGoogle Scholar
  270. Hubbard, J. I.: The effect of magnesium, calcium and potassium on the spontaneous release of transmitter from mammalian motor nerve endings. [Sent into J. Physiol. (Lond.) (1961).]Google Scholar
  271. Hughes, J. R.: Post-tetanic potentiation. Physiol. Rev.38, 91–113 (1958).PubMedGoogle Scholar
  272. Hunt, C. C.: Monosynaptic reflex response of spinal motoneurons to graded afferent stimulation. J. gen. Physiol.38, 813–852 (1955).PubMedCrossRefGoogle Scholar
  273. —, andM. Kuno: Properties of spinal interneurones. J. Physiol. (Lond.)147, 346–363 (1959).Google Scholar
  274. —, andE. R. Perl: Spinal reflex mechanisms concerned with skeletal muscle. Physiol. Rev.40, 538–579 (1960).PubMedGoogle Scholar
  275. Hutter, O. F.: Post-tetanic restoration of neuromuscular transmission blocked by d-tubocurarine. J. Physiol. (Lond.)118, 216–227 (1952).Google Scholar
  276. —: Mode of action of autonomic transmitters on the heart. Brit. med. Bull.13, 176–180 (1957).PubMedGoogle Scholar
  277. —, andK. Kostial: Effect of magnesium and calcium ions on the release of acetylcholine. J. Physiol. (Lond.)124, 234–241 (1954).Google Scholar
  278. Hutter, O. F., andW. Trautwein: Vagal effects on the sinus venosus of the frog’s heart. J. Physiol. (Lond.)129, 48P (1955).Google Scholar
  279. ——: Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart. J. gen. Physiol.39, 715–733 (1956).PubMedCrossRefGoogle Scholar
  280. Ito, M.: The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes. Jap. J. Physiol.7, 297–323 (1957).CrossRefGoogle Scholar
  281. Jack, J., A. K. McIntyre andG. Somjen: Excitability of motoneurones during reflex facilitation and inhibition. Int. Congr. Physiol. Sci.21, Communications, 136 (1959).Google Scholar
  282. Job, C., andA. Lundberg: On the significance of post- and pre-synaptic events for facilitation and inhibition in the sympathetic ganglion of the cat. Acta physiol. scand.28, 14–28 (1953).PubMedCrossRefGoogle Scholar
  283. Kandel, E. R., andW. A. Spencer: Repetitive firing of hippocampal neurons. Fed. Proc.19, 290 (1960).Google Scholar
  284. Kandel, E. R., W. A. Spencer andF. J. Brinley: Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J. Neurophysiol. (1961, in press).Google Scholar
  285. Kao, C. Y., andH. Grundfest: Conductile and integrative functions of crayfish giant axons. Fed. Proc.15, 104 (1956).Google Scholar
  286. ——: Postsynaptic electrogenesis in septate giant axons. I. Earthworm medium giant axon. J. Neurophysiol.20, 553–573 (1957).PubMedGoogle Scholar
  287. Katz, B.: Action potentials from a sensory nerve ending. J. Physiol. (Lond.)111, 248–260 (1950).Google Scholar
  288. —: Microphysiology of the neuro-muscular junction. A physiological “quantum of action” at the myoneural junction. Bull. Johns Hopk. Hosp.102, 275–295 (1958a).Google Scholar
  289. —: Microphysiology of the neuro-muscular junction. The chemo-receptor function of the motor end-plate. Bull. Johns Hopk. Hosp.102, 296–312 (1958b).Google Scholar
  290. —, andS. Thesleff: On the factors which determine the amplitude of the “miniature end-plate potential”. J. Physiol. (Lond.)137, 267–278 (1957a).Google Scholar
  291. ——: A study of the “desensitization” produced by acetylcholine at the motor end-plate. J. Physiol. (Lond.)138, 63–80 (1957b).Google Scholar
  292. Katz, B., andS. Thesleff: The interaction between Edrophonium (tensilon) and acetylcholine at the motor end-plate. Brit. J. Pharmacol.12, 260–264 (1957c).PubMedGoogle Scholar
  293. Kerr, D. I. B., andK. E. Hagbarth: An investigation of olfactory centrifugal fiber system. J. Neurophysiol.18, 362–374 (1955).PubMedGoogle Scholar
  294. Koketsu, K.: Intracellular potential changes of primary afferent nerve fibres in spinal cords of cats. J. Neurophysiol.19, 375–392 (1956).PubMedGoogle Scholar
  295. —, andS. Nishi: Restoration of neuromuscular transmission in sodium-free hydrazinium solution. J. Physiol. (Lond.)147, 239–252 (1959).Google Scholar
  296. Kolmodin, G. M., andC. R. Skoglund: Slow membrane potential changes accompanying excitation and inhibition in spinal moto- and interneurons in the cat during natural activation. Acta physiol. scand.44, 11–54 (1958).PubMedCrossRefGoogle Scholar
  297. Kostyuk, P. G.: Electrophysiological characteristics of individual spinal cord neurons. Sechenov physiol. J. U. S. S. R.46, 10–22 (1960).Google Scholar
  298. Krnjević, K., andR. Miledi: Acetylcholine in mammalian neuromuscular transmission. Nature (Lond.)182, 805–806 (1958).CrossRefGoogle Scholar
  299. —, andJ. F. Mitchell: Release of acetylcholine in rat diaphragm. Nature (Lond.)186, 241 (1960).CrossRefGoogle Scholar
  300. Kuffler, S. W.: Electric potential changes at an isolated nerve-muscle junction. J. Neurophysiol.5, 18–26 (1942a).Google Scholar
  301. —: Further study of transmission in an isolated nerve-muscle fibre preparation. J. Neurophysiol.5, 309–322 (1942b).Google Scholar
  302. —: The effect of calcium on the neuro-muscular junction. J. Neurophysiol.7, 17–26 (1944).Google Scholar
  303. —: Physiology of neuro-muscular junctions: electrical aspects. Fed. Proc.7, 437–446 (1948).PubMedGoogle Scholar
  304. —: Transmitter mechanism at the nerve-muscle junction. Arch. Sci. physiol.3, 585–601 (1949).Google Scholar
  305. —: Synaptic inhibitory mechanisms, properties of dendrites and problems of excitation in isolated sensory nerve cells. Exp. Cell. Res. Suppl.5, 493–519 (1958).Google Scholar
  306. —: Excitation and inhibition in single nerve cells. From Harvey Lectures, 1958–1959, pp. 176–218. New York: Academic Press Inc. 1960.Google Scholar
  307. —, andC. Edwards: Mechanism of gamma aminobutyric acid (GABA) action and its relation to synaptic inhibition. J. Neurophysiol.21, 589–610 (1958).PubMedGoogle Scholar
  308. —, andC. Eyzaguirre: Synaptic inhibition in an isolated nerve cell. J. gen. Physiol.39, 155–184 (1955).PubMedCrossRefGoogle Scholar
  309. —, andE. M. Vaughan Williams: Small-nerve junctional potentials. The distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibres they innervate. J. Physiol. (Lond.)121, 289–317 (1953).Google Scholar
  310. Kuno, M.: Effects of strychnine on the intracellular potentials of spinal motoneurones of the toad. Jap. J. Physiol.7, 42–50 (1957).CrossRefGoogle Scholar
  311. —: Excitability following antidromic activation in spinal motoneurones supplying red muscles. J. Physiol. (Lond.)149, 374–393 (1959).Google Scholar
  312. Laporte, Y., andD. P. C. Lloyd: Nature and significance of the reflex connections established by large afferent fibers of muscular origin. Amer. J. Physiol.169, 609–621 (1952).PubMedGoogle Scholar
  313. —, andR. Lorente de Nó: Potential changes evoked in a curarized sympathetic ganglion by presynaptic volleys of impulses. J. cell. comp. Physiol.35, Suppl. 2, 61–106 (1950).CrossRefGoogle Scholar
  314. —,A. Lundberg andO. Oscarsson: Functional organization of the dorsal spino-cerebellar tract in the cat. I. Recording of mass discharge in dissected Fleschig’s fasciculus. Acta physiol. scand.36, 175–187 (1956).PubMedCrossRefGoogle Scholar
  315. Larrabee, M. G., andD. W. Bronk: Prolonged facilitation of synaptic excitation in sympathetic ganglia. J. Neurophysiol.10, 139–154 (1947).PubMedGoogle Scholar
  316. Li Choh-Luh: Some properties of pyramidal neurones in motor cortex with particular reference to sensory stimulation. J. Neurophysiol.22, 385–394 (1959).Google Scholar
  317. Liley, A. W.: An investigation of spontaneous activity at the neuromuscular junction of the rat. J. Physiol. (Lond.)132, 650–666 (1956a).Google Scholar
  318. —: The quantal compenents of the mammalian end-plate potential. J. Physiol. (Lond.)133, 571–587 (1956b).Google Scholar
  319. —: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond.)134, 427–443 (1956c).Google Scholar
  320. —: Spontaneous release of transmitter substance in multiquantal units. J. Physiol. (Lond.)136, 595–605 (1957).Google Scholar
  321. —, andK. A. K. North: An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol.16, 509–527 (1953).PubMedGoogle Scholar
  322. Lloyd, D. P. C.: A direct central inhibitory action of dromically conducted impulses. J. Neurophysiol.4, 184–190 (1941).Google Scholar
  323. —: Functional organisation of the spinal cord. Physiol. Rev.24, 1–17 (1944).Google Scholar
  324. —: Facilitation and inhibition of spinal motoneurons. J. Neurophysiol.9, 421–438 (1946a).PubMedGoogle Scholar
  325. —: Integrative pattern of excitation and inhibition in two-neuron reflex arc. J. Neurophysiol.9, 439–444 (1946b).PubMedGoogle Scholar
  326. —: Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J. gen. Physiol.33, 147–170 (1949).PubMedCrossRefGoogle Scholar
  327. —: Electrotonus in dorsal nerve roots. Cold Spr. Harb. Symp. quant. Biol.17, 203–219 (1952).Google Scholar
  328. —: Synaptic transmission. In Textbook of Physiology, pp. 58–77, ed. byJ. F. Fulton, 16th edit. Philadelphia and London: W. B. Saunders Company 1955.Google Scholar
  329. —: Spinal mechanisms involved in somatic activities. In Handbook of Physiology, Sect. 1, Neurophysiology, Vol. 2, Chap. XXXVI, p. 929–949. Ed.J. Field. Washington: American Physiological Society 1960.Google Scholar
  330. —,C. C. Hunt andA. K. McIntyre: Transmission in fractionated monosynaptic spinal reflex systems. J. gen. Physiol.38, 307–317 (1955).PubMedCrossRefGoogle Scholar
  331. —, andA. K. McIntyre: Transmitter potentiality of homonymous and heteronymous monosynaptic reflex connections of individual motoneurones. J. gen. Physiol.38, 789–799 (1955).PubMedCrossRefGoogle Scholar
  332. —, andV. J. Wilson: Functional organization in the terminal segments of the spinal cord with a consideration of central excitatory and inhibitory latencies in monosynaptic reflex systems. J. gen. Physiol.42, 1219–1231 (1959).PubMedCrossRefGoogle Scholar
  333. Loewenstein, W. R.: The generation of electric activity in a nerve ending. Ann. N.Y. Acad. Sci.81, 367–387 (1959).PubMedCrossRefGoogle Scholar
  334. —, andR. Rathkamp: The sites for mechano-electric conversion in a Pacinian corpuscle. J. gen. Physiol.41, 1245–1265 (1958).PubMedCrossRefGoogle Scholar
  335. Lorente de Nó, R.: Synaptic stimulation of motoneurons as a local process. J. Neurophysiol.1, 195–206 (1938).Google Scholar
  336. —: Action potential of the motoneurons of the hypoglossus nucleus. J. cell. comp. Physiol.29, 207–288 (1947).CrossRefGoogle Scholar
  337. Lorenzo, A. J. de: The fine structure of synapses. Biol. Bull.117, 390 (1959).Google Scholar
  338. —: The fine structure of synapses in the ciliary ganglion of the chick. J. biophys. biochem. Cytol.7, 31–36 (1960).CrossRefGoogle Scholar
  339. Lucas, K.: The conduction of the nervous impulse. London: Longmans 1917.Google Scholar
  340. Lundberg, A., andH. Quilisch: Presynaptic potentiation and depression of neuromuscular transmission in frog and rat. Acta physiol. scand.30, Suppl.111, 111–120 (1953a).Google Scholar
  341. ——: On the effect of calcium on presynaptic potentiation and depression at the neuromuscular junction. Acta physiol. scand.30, Suppl.111, 121–129 (1953b).Google Scholar
  342. Luse, S. A.: Electron microscopic observations of the central nervous system. In: Inhibition in the nervous system and γ-aminobutyric acid, pp. 29–33. Ed. E. Roberts. Oxford: Pergamon Press 1960.Google Scholar
  343. Machne, X., E. Fadiga andJ. M. Brookhart: Antidromic and synaptic activation of frog motor neurons. J. Neurophysiol.22, 483–503 (1959).PubMedGoogle Scholar
  344. Martin, A. R.: A further study of the statistical composition of the end-plate potential. J. Physiol. (Lond.)130, 114–122 (1955).Google Scholar
  345. Maynard, D. M.: Activity in a crustacean ganglion. II. Pattern and interaction in burst formation. Biol. Bull.109, 420–436 (1955).CrossRefGoogle Scholar
  346. McIntyre, A. K., R. F. Mark andJ. Steiner: Multiple firing at central synapses. Nature (Lond.)178, 302–304 (1956).CrossRefGoogle Scholar
  347. McLennan, H.: A comparison of some physiological properties of an inhibitory factor from brain (Factor I) and of γ-aminobutyric acid and related compounds. J. Physiol. (Lond.)139, 79–86 (1957).Google Scholar
  348. —: The fractionation and purification of Factor I. J. Physiol. (Lond.)151, 31–39 (1960).Google Scholar
  349. Miledi, R.: The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation. J. Physiol. (Lond.)151, 1–23 (1960a).Google Scholar
  350. —: Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibres. J. Physiol. (Lond.)151, 24–30 (1960b).Google Scholar
  351. Minz, B.: The role of humoral agents in nervous activity. Springfield Ill.: Ch. C. Thomas 1955.Google Scholar
  352. Nastuk, W. L.: The electrical activity of the muscle cell membrane at the neuromuscular junction. J. cell. comp. Physiol.42, 249–272 (1953).CrossRefGoogle Scholar
  353. —: Some ionic factors that influence the action of acetylcholine at the muscle end-plate membrane. Ann. N.Y. Acad. Sci.81, 317–327 (1959).PubMedCrossRefGoogle Scholar
  354. —, andJ. T. Alexander: The action of 3-hydroxyphenyldimethylethyl-ammonium (Tensilon) on neuromuscular transmission in the frog. J. Pharmacol. exp. Ther.111, 302–328 (1954).PubMedGoogle Scholar
  355. —, andA. L. Hodgkin: The electrical activity of single muscle fibres. J. cell. comp. Physiol.35, 39–74 (1950).CrossRefGoogle Scholar
  356. Nelson, P. G., K. Frank andW. Rall: Single spinal motoneuron extracellular potential fields. Fed. Proc.19, 303 (1960).Google Scholar
  357. Nishi, S., andK. Koketsu: Electrical properties and activities of single sympathetic neurons in frogs. J. cell. comp. Physiol.55, 15–30 (1960).PubMedCrossRefGoogle Scholar
  358. Oscarsson, O.: Functional organization of the ventral spino-cerebellar tract in the cat. II. Connections with muscle, joint, and skin nerve afferents and effects on adequate stimulations of various receptors. Acta physiol. scand.42, Suppl. 146 (1957).Google Scholar
  359. Otani, T., andT. H. Bullock: Effects of presetting the membrane potential of the soma of spontaneous and integrating ganglion cells. Physiol. Zool.32, 104–114 (1959).Google Scholar
  360. Palay, S. L.: Synapses in the central nervous system. J. biophys. biochem. Cytol.2, Suppl. 193–202 (1956).PubMedCrossRefGoogle Scholar
  361. —: The morphology of synapses in the central nervous system. Exp. Cell. Res., Suppl.5, 275–293 (1958).Google Scholar
  362. Paton, W. D. M.: Central and synaptic transmission in the nervous system (Pharmacological aspects). Ann. Rev. Physiol.20, 431–470 (1958).CrossRefGoogle Scholar
  363. —, andW. L. M. Perry: The relationship between depolarization and block in the cat’s superior cervical ganglion. J. Physiol. (Lond.)119, 43–57 (1953).Google Scholar
  364. Perry, W. L. M.: Acetylcholine release in the cat’s superior cervical ganglion. J. Physiol. (Lond.)119, 439–454 (1953).Google Scholar
  365. Phillips, C. G.: Intracellular records from Betz cells in the cat. Quart. J. exp. Physiol.41, 58–69 (1956).PubMedGoogle Scholar
  366. —: Actions of antidromic pyramidal volleys on single Betz cells in the cat. Quart. J. exp. Physiol.44, 1–25 (1959).PubMedGoogle Scholar
  367. —: Some properties of pyramidal neurones of the motor cortex, pp. 4–24; Ciba Foundation Symposium “The Nature of Sleep”. Edit.G. E. W. Wolstenholme andM. O’Connor. London: J. & A. Churchill 1961.Google Scholar
  368. Preston, J. B., andD. G. Whitlock: Precentral facilitation and inhibition of spinal motoneurons. J. Neurophysiol.23, 154–170 (1960).PubMedGoogle Scholar
  369. Purpura, D. P., andH. Grundfest: Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J. Neurophysiol.19, 573–595 (1956).PubMedGoogle Scholar
  370. Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol.1, 491–527 (1959).PubMedCrossRefGoogle Scholar
  371. —: Membrane potential transients and membrane time constant of motoneurons. Exp. Neurol.2, 503–532 (1960).PubMedCrossRefGoogle Scholar
  372. Renshaw, B.: Influence of discharge of motoneurons upon excitation of neighbouring motoneurons. J. Neurophysiol.4, 167–183 (1941).Google Scholar
  373. —: Reflex discharge in branches of the crural nerve. J. Neurophysiol.5, 487–498 (1942).Google Scholar
  374. —: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol.9, 191–204 (1946a).PubMedGoogle Scholar
  375. —: Observations on interaction of nerve impulses in the grey matter and on the nature of central inhibition. Amer. J. Physiol.146, 443–448 (1946b).PubMedGoogle Scholar
  376. Retzlaff, E.: Neurohistological basis for the functioning of paired half-centres. J. comp. Neurol.101, 407–446 (1954).PubMedCrossRefGoogle Scholar
  377. Robbins, J., andW. G. van der Kloot: The effect of picrotoxin on peripheral inhibition in the crayfish. J. Physiol. (Lond.)143, 541–552 (1958).Google Scholar
  378. Robertis, E. D. P. de: Submicroscopic changes in the synapse after nerve section in the acoustic ganglion of guinea pig. An electron microscope study. J. biophys. biochem. Cytol.2, 503–512 (1956).CrossRefGoogle Scholar
  379. —: Submicroscopic morphology and function of the synapse. Exp. Cell Res., Suppl.5, 347–369 (1958).Google Scholar
  380. —, andH. S. Bennett: Submicroscopic vesicular component in the synapse. Fed. Proc.13, 35 (1954).Google Scholar
  381. —, andC. M. Franchi: Electron microscope observations in synaptic vesicles in synapses of the retinal rods and cones. J. biophys. biochem. Cytol.2, 307–318 (1956).CrossRefGoogle Scholar
  382. H. M. Gerschenfeld andF. Wald: Ultrastructure and function of glial cells, pp. 69–78. In Structure and Function of the Cerebral cortex. Edit.D. B. Tower andJ. P. Schade, Amsterdam: Elsevier Publ. Company 1960.Google Scholar
  383. Robertson, J. D.: Recent electron microscope observations in the ultrastructure of the crayfishmedian-to-motor giant synapse. Exp. Cell Res.8, 226–229 (1955).PubMedCrossRefGoogle Scholar
  384. —: The ultrastructure of a reptilian myoneural juntion. J. biophys. biochem. Cytol.2, 381–394 (1956).PubMedCrossRefGoogle Scholar
  385. —: Electron microscopy of the motor end-plate and the neuromuscular spindle. Amer. J. phys. Med.39, 1–43 (1960).PubMedGoogle Scholar
  386. Rosenblueth, A.: The transmission of nerve impulses at neuroeffector junctions and peripheral synapses. New York: John Wiley & Sons 1950.Google Scholar
  387. Rushton, W. A. H.: Action potentials from the isolated nerve cord of the earthworm. Proc. roy. Soc. B132, 423–437 (1945).CrossRefGoogle Scholar
  388. Schaefer, H., u.P. Haass: Über einen lokalen Erregungsstrom an der motorischen Endplatte. Pflügers Arch. ges. Physiol.242, 364–381 (1939).CrossRefGoogle Scholar
  389. Spencer, W. A., andE. R. Kandel: Firing level and prepotentials in hippocampal neurons. Fed. Proc.19, 290 (1960).Google Scholar
  390. Spencer, W. A., andE. R. Kandel: Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J. Neurophysiol. (1961, in press).Google Scholar
  391. Spyropoulos, C. S., andI. Tasaki: Nerve excitation and synaptic transmission. Ann. Rev. Physiol.22, 407–432 (1960).CrossRefGoogle Scholar
  392. Szentagothai, J.: The anatomical basis of synaptic transmission of excitation and inhibition in motoneurons. Acta morph. Acad. Sci. hung.8, 287–309 (1958).Google Scholar
  393. —, u.K. Rajkovits: Die Rückwirkung der spezifischen Funktion auf die Struktur der Nervenelemente. Acta morph. Acad. Sci. hung.5, 253–274 (1955).Google Scholar
  394. Takeuchi, A.: The long-lasting depression in neuromuscular transmission of frog. Jap. J. Physiol.8, 102–113 (1958).CrossRefGoogle Scholar
  395. —: Neuromuscular transmission of fish skeletal muscles investigated with intracellular microelectrode. J. cell. comp. Physiol.54, 211–221 (1959).PubMedCrossRefGoogle Scholar
  396. Takeuchi, A., andN. Takeuchi: Active phase of frog’s end-plate potential. J. Neurophysiol.22, 395–411 (1959).PubMedGoogle Scholar
  397. ——: Further analysis of relationship between endplate potential and end-plate current. J. Neurophysiol.23, 397–402 (1960a).PubMedGoogle Scholar
  398. ——: On the permeability of the end-plate membrane during the action of transmitter. J. Physiol. (Lond.)154, 52–67 (1960b).Google Scholar
  399. Tauc, L.: Étude de l’activité élémentaires des cellules du ganglion adominal deL’Aplysie. J. Physiol. (Paris)47, 769–792 (1955).Google Scholar
  400. —: Processus post-synaptique d’excitation et d’inhibition dans le soma neuronique deL’Aplysie et deL’Escargot. Arch. ital. Biol.96, 78–110 (1958).Google Scholar
  401. —: The site of origin of the efferent action potentials in the giant nerve cell of Aplysia. J. Physiol. (Lond.)152, 36P-37P (1960a).Google Scholar
  402. —: Evidence of synaptic inhibitor actions not conveyed by inhibitory postsynaptic potentials. In: Inhibition in the nervous system and gamma-aminobutyric acid, pp. 85–89. Ed.E. Roberts. Oxford: Pergamon Press 1960b.Google Scholar
  403. —, andH. Gerschenfeld: L’Acetylcholine comme transmetteur possible d’inhibition synaptique chez l’Aplysie. C.R. Acad. Sci. (Paris)251, 3076–3078 (1960).Google Scholar
  404. Terzuolo, C., andT. Araki: The membrane currents generated in spinal motoneurones during action potentials and synaptic activity and rcorded by the voltage-clamp technique., gen. Physiol. (1961, in press).Google Scholar
  405. Terzuolo, C. A., andT. H. Bullock: Acceleration and inhibition in crustacean ganglion cells. Arch. ital. Biol.96, 117–134 (1958).Google Scholar
  406. Thesleff, S.: The effects of acetylcholine, decamethonium and succinylcholine on neuromuscular transmission in the rat. Acta physiol. scand.34, 386–392 (1955).PubMedCrossRefGoogle Scholar
  407. —: A study of the interaction between neuromuscular blocking agents and acetylcholine at the mammalian motor end plate. Acta anaesth. scand.2, 69–79 (1958).PubMedCrossRefGoogle Scholar
  408. —: Motor end-plate “desensitization” by repetitive nerve stimuli. J. Physiol. (Lond.)148, 659–664 (1959).Google Scholar
  409. —: Supersensitivity of skeletal muscle produced by botulinum toxin. J. Physiol. (Lond.)151, 598–607 (1960).Google Scholar
  410. Tomita, T.: The nature of action potentials in the lateral eye of the horseshoe crab as revealed by simultaneous intra- and extracellular recording. Jap. J. Physiol.6, 327–340 (1956).CrossRefGoogle Scholar
  411. Trautwein, W., u.J. Dudel: Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflügers Arch. ges. Physiol.266, 324–334 (1958).CrossRefGoogle Scholar
  412. —,S. W. Kuffler andC. Edwards: Changes in membrane characteristics of heart muscle during inhibition. J. gen. Physiol.40, 135–145 (1956).PubMedCrossRefGoogle Scholar
  413. Vogt, M.: Sympathomimetic amines in the central nervous system. Brit. med. Bull.13, 166–171 (1957).PubMedGoogle Scholar
  414. Wall, P. D.: Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. (Lond.)142, 1–21 (1958).Google Scholar
  415. —: Repetitive discharge of neurons. J. Neurophysiol.22, 305–320 (1959).PubMedGoogle Scholar
  416. —, andA. R. Johnson: Changes associated with post-tetanic potentiation of a monosynaptic reflex. J. Neurophysiol.21, 149–158 (1958).Google Scholar
  417. Werman, R.: Electrical inexcitability of the synaptic membrane in the frog skeletal muscle fibre. Nature (Lond.)188, 149–150 (1960).CrossRefGoogle Scholar
  418. Whittaker, V. P.: The isolation and characterization of acetylcholine containing particles from brain. Biochem. J.72, 694–706 (1959).PubMedGoogle Scholar
  419. Wiersma, C. A. G.: Giant nerve fibre system of the crayfish. A contribution to comparative physiology of synapse. J. Neurophysiol.10, 23–38 (1947).PubMedGoogle Scholar
  420. —, andA. van Harreveld: On the nerve-muscle system of the hermit crab (Eupagurus berhardus). III. The action currents of the muscles of the claw in contraction and inhibition. Arch. néerl. Physiol.20, 89–102 (1935).Google Scholar
  421. Wiesel, T. N.: Intracellular recordings from retinal ganglion cells. In XXI. Internat. Congr. of Physiological Sciences, Abstracts of Communications, 1959, p. 296.Google Scholar
  422. Wilson, V. J.: Recurrent facilitation of spinal reflexes. J. gen. Physiol.42, 703–713 (1959).PubMedCrossRefGoogle Scholar
  423. F. P. J. Diecke andW. H. Talbot: Action of tetanus toxin in recurrent conditioning. Fed. Proc.19, 303 (1960).Google Scholar
  424. W. H. Talbot andF. P. J. Diecke: Distribution of recurrent facilitation and inhibition in cat spinal cord. J. Neurophysiol.23, 144–153 (1960).PubMedGoogle Scholar
  425. Woodbury, J. W., andH. D. Patton: Electrical activity of single spinal cord elements. Cold. Spr. Harb. Symp. quant. Biol.17, 185–188 (1952).Google Scholar
  426. Wyckoff, R. W. G., andJ. Z. Young: The motoneuron suface. Proc. roy. Soc. B144, 440–450 (1956).CrossRefGoogle Scholar
  427. Zaimis, E. J.: Motor end-plate differences as a determining factor in the mode of action of neuro-muscular blocking substances. J. Physiol. (Lond.)122, 238–251 (1953).Google Scholar
  428. Župančič, A. O.: The mode of action of acetylcholine. Acta physiol. scand.29, 63–71 (1952).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • John C. Eccles
    • 1
  1. 1.Department of Physiology, John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia

Personalised recommendations