Advertisement

Elektrophysiologie der Herzmuskelfaser

  • Wolfgang Trautwein
Conference paper
Part of the Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie book series (ERGEBPHYSIOL, volume 51)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbot, B.C., andW.F.H.M. Mommaerts: A study of inotropic mechanism in the papillary muscle preparation. J. gen. Physiol.42, 533–552 (1959).Google Scholar
  2. Abramson, D.I., andS. Margolin: A Purkinje conduction network in the myocardium of the mammalian ventricles. J. Anat. (Lond.)70, 250–259 (1936).Google Scholar
  3. Adrian, R.H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.)133, 631–658 (1956).Google Scholar
  4. Alexander, J.T., andW.L. Nastuk: An instrument for the production of microelectrodes used in electrophysiological studies. Rev. sci. Instrum.24, 528–531 (1953).Google Scholar
  5. Arvanitaki, A.: Propriétés rythmiques de la matière vivante. II. Étude expérimentale sur le myocarde d’helix. Paris: Herman 1938.Google Scholar
  6. Ashley, L.M.: A determination of the diameters of ventricular myocardial fibres in man and other animals. Amer. J. Anat.77, 325–363 (1945).PubMedGoogle Scholar
  7. Bak, A.F.: A unity gain cathode follower. Electroenceph. clin. Neurophysiol.10, 745–748 (1958).PubMedGoogle Scholar
  8. Bammer, H.: Die Beziehungen zwischen der Reizfrequenz und der Geschwindigkeit der Erregungsleitung im Herzmuskel. Z. ges. exp. Med.121, 488–496 (1953).PubMedGoogle Scholar
  9. —, u.K.E. Rothschuh: Über eine Methode zur Messung der Leitungsgeschwindigkeit der Erregung im Froschherzstreifen zur Prüfung pharmakologischer Substanzen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak.214, 367–373 (1952).Google Scholar
  10. Bauer, V.: Die Kontraktionsform des Froschventrikels unter Anodenwirkung. Z. Biol.80, 261–288 (1924).Google Scholar
  11. Benigno, P., etP. Daudel: Radio-potassium et coeur isolé de grenouille. I. Répartition du potassium entre l’organe et le liquide de Ringer. J. Physiol. (Paris)42, 233–242 (1950).Google Scholar
  12. Benoit, P.H., E. Coraboeut etJ. Etzensperger: Données microphysiologiques sur la fibre musculaire striée. Colloque Internationaux du Centre National de la Recherche Scientifique, Paris, Gif-Sur-Yvette, 19–23 Juillet 1955.Google Scholar
  13. Benson, E.S., E.F. Freier, B.E. Hallaway andM.J. Johnson: Distribution of fluid and electrolytes and concentration of Actomyosin and other proteins in the myocardium of dogs with chronic congestive heart failure. Amer. J. Physiol.187, 481–492 (1956).Google Scholar
  14. Bernstein, J.: Elektrobiologie. Braunschweig: Vieweg & Sohn 1912.Google Scholar
  15. Biedermann, W.: Beiträge zur allgemeinen Nerven-und Muskelphysiologie. 14. Mitteilung. Über das Herz von Helix pomatia. S.-B. Akad. Wiss. Wien, math.-nat. Kl.89, 19–55 (1884).Google Scholar
  16. Biedermann, W.: Electrophysiologie. Jena: Gustav Fischer 1895.Google Scholar
  17. Boyle, P.J., andE.J. Conway: Potassium accumulation in muscle and associated changes. J. Physiol. (Lond.)100, 1–63 (1941).Google Scholar
  18. Bozler, E.: The initiation of impulses in cardiac muscle. Amer. J. Physiol.138, 273–282 (1943).Google Scholar
  19. —: The time relations of the electric response of cardiac muscle. Fed. Proc.6, 79 (1947).PubMedGoogle Scholar
  20. —: Conduction, automaticity, and tonus of visceral muscles. Experientia (Basel)4, 213–218 (1948).Google Scholar
  21. Brady, A.J., andH.H. Hecht: On the origin of the heart beat. Amer. J. Med.17, 110 (1954).Google Scholar
  22. —, andJ.W. Woodbury: Effects of sodium and potassium on repolarization in frog ventricular fibers. Ann. N.Y. Acad. Sci.65, 687–692 (1957).PubMedGoogle Scholar
  23. Brendel, W., H. Gladewitz, F. Hildebrandt u.W. Trautwein: Elektrophysiologische Untersuchungen am Herz-Lungen-Präparat nachStarling. Cardiologia (Basel)18, 345 (1951).Google Scholar
  24. —,W. Raule u.W. Trautwein: Die Leitungsgeschwindigkeit und Erregungsausbreitung in den Vorhöfen des Hundes. Pflügers Arch. ges. Physiol.253, 106–113 (1951).Google Scholar
  25. Briscoe, S., andJ.H. Burn: The formation of an acetylcholine-like substance by the isolated rabbit heart. J. Physiol. (Lond.)126, 181–190 (1954).Google Scholar
  26. Bromberger-Barnea, B., P. Caldini andG.J. Wittenstein: Transmembrane potentials of the normal and hypothermic human heart. Circulat. Res.7, 138–140 (1959).PubMedGoogle Scholar
  27. Brooks, McC. Ch., P.F. Cranefield, B.F. Hoffman andA.A. Siebens: Anodal effects during the refractory period of cardiac muscle. J. cell. comp. Physiol.48, 237 (1956).Google Scholar
  28. —,B.F. Hoffman, E.E. Suckling andO. Orias: Excitability of the heart. New York u. London: Grune & Stratton 1955.Google Scholar
  29. —,O. Orias, J.L. Gilbert, A.A. Siebens, B.F. Hoffman andE.E. Suckling: Excitability cycle of mammalian auricle. Amer. J. Physiol.163, 469–474 (1950).PubMedGoogle Scholar
  30. Buchthal, F., u.T. Peterfi: Die Potentialdifferenz einzelner lebender Muskelfasern im Ruhezustand und während der Kontraktion. Pflügers Arch. ges. Physiol.234, 527–543 (1934).Google Scholar
  31. Burgen, A.S.V., andK.G. Terroux: The membrane resting and action potentials of the cat auricle. J. Physiol. (Lond.)119, 139–152 (1953a).Google Scholar
  32. ——: On the negative inotropic effect in the cat’s auricle. J. Physiol. (Lond.)120, 449–464 (1953b).Google Scholar
  33. Burn, J.H.: Function of autonomic transmitters. Baltimore: Williams & Wilkins Company 1956.Google Scholar
  34. —, andJ.R. Vane: The relation between the motor and the inhibitor action of Acetylcholine. J. Physiol. (Lond.)108, 104–115 (1949).Google Scholar
  35. Carmeliet, E.: Influence de rythme sur la durée du potentiel d’action ventriculaire cardiaque. Arch. Int. Physiol.63, 222 (1955).PubMedGoogle Scholar
  36. —: Effets de la substitution des ions chlorure sur le potentiel de membrane des fibres dePurkinje. Helv. physiol. pharmacol. Acta17, C18 (1959).Google Scholar
  37. —: L’influence de la concentration extracellulaire du K sur la perméabilité de la membrane des fibres dePurkinje de mouton pour les ions 42 K. Helv. physiol. pharmacol. Acta18, C 15-C 16 (1960).Google Scholar
  38. —, etL. Lacquet: Durée du potentiel d’action ventriculaire de grenouille en fonction de la fréquence influence des variations ioniques de potassium et sodium. Arch. Int. Physiol.66, 1 (1958).PubMedGoogle Scholar
  39. Castillo, J. Del, andB. Katz: Local activity at a depolarized nerv-muscle junction. J. Physiol. (Lond.)128, 396–411 (1955a).Google Scholar
  40. ——: Production in membrane potential changes in the frog heart by inhibitory nerve impulses. Nature (Lond.)175, 1035 (1955).Google Scholar
  41. Cattell, Mc.K., andH. Gold: The relation of rhythm to the force of contraction of mammalian cardiac muscle. Amer. J. Physiol.133, 236 (1941).Google Scholar
  42. Chang, J.J., andR.F. Schmidt: Action potentials of reversed polarity in Purkinje fibers of dog heart. Naturwissenschaften11, 259 (1960) (a).Google Scholar
  43. ——: Prolonged action potentials and regenerative hyperpolarizing responses in Purkinje fibres of mammalian heart. Pflügers Arch. ges. Physiol.272, 127–141 (1960 b).Google Scholar
  44. Clement, E.: Über eine neue Methode zur Untersuchung der Fortleitung des Erregungsvorganges im Herzen. Z. Biol.58, 110–161 (1912).Google Scholar
  45. Conn, H.L., andJ.C. Wood: Sodium exchange and distribution in the isolated heart of the normal dog. Amer. J. Physiol.197, 631–636 (1959).PubMedGoogle Scholar
  46. Conway, E.J.: Nature and significance of concentration relation of potassium and sodium ions in skeletal muscle. Physiol. Rev.37, 84–132 (1957).PubMedGoogle Scholar
  47. —: Principles underlying the exchanges of K and Na ions across cell membranes. J. gen. Physiol.13, 17–41 (1960).Google Scholar
  48. Coombs, J.S., J.C. Eccles andP. Fatt: The specific ionic conductances and the ionic movements across the motoneural membrane that produce the inhibitory postsynaptic potential. J. Physiol. (Lond.)130, 326–373 (1953).Google Scholar
  49. Coraboeuf, E. etJ. Boistel: L’action des taux élevés de gaz carbonique sur le tissu cardiaque, étudié à l’aide de microélectrodes intracellulaires. Soc. de Biol.147, 654 (1953).Google Scholar
  50. —,R. Distel etJ. Boistel: Potentiels cellulaires des tissus conducteur et musculaire du coeur de mammifière. C. R. Soc. Biol. (Paris)147, 1757–1760 (1953).Google Scholar
  51. Coraboeuf, E., R. Distel etJ. Boistel: Electrophysiologie élémentaire des tissus cardiaques. Microphysiologie comparée des éléments excitables. Cent. Nat. de la Recherche Scientifique, 13, Quai Anatole-France, Paris VII (1957).Google Scholar
  52. —, etM. Otsuka: L’action des solutions hyposodiques sur les potentiels cellulaires de tissu cardiaque de mammifêres. C.R. Acad. Sci. (Paris)243, 441 (1956).Google Scholar
  53. —, andS. Weidmann: Temperature effects on the electrical activity of Purkinje fibers. Helv. physiol. pharmacol. Acta12, 32–41 (1954).PubMedGoogle Scholar
  54. —,F. Zacouto, Y.M. Gargouil etJ. Laplaud: Mesure de la résistance membranaire du myocarde ventriculaire de mammifères aux cours de l’activité. C.R. Acad. Sci. (Paris)246, 2934–2937 (1958).Google Scholar
  55. Cranefield, P.F., J.A.E. Eyster andW.E. Gilson: Effect of reduction of external sodium chloride on the injury potentials of cardiac muscle. Amer. J. Physiol.166, 269–272 (1951) (a).PubMedGoogle Scholar
  56. ———: Electrical characteristics of injury potentials. Amer. J. Physiol.167, 450–456 (1951) (b).PubMedGoogle Scholar
  57. —, andB.F. Hoffman: Propagated repolarization in heart muscle. J. gen. Physiol.41, 633 (1958) (a).PubMedGoogle Scholar
  58. ——: Electrophysiology of single cardiac cells. Physiol. Rev.38, 41–76 (1958) (b).PubMedGoogle Scholar
  59. Crill, W.E., R.E. Rumery andJ.W. Woodbury: Effects of membrane current on transmembrane potentials of culturedcchick embryo heart cells. Amer. J. Physiol.197, 733–735 (1959).Google Scholar
  60. Daly, I. De B., andA.J. Clark: The action of ions upon the frog’s heart. J. Physiol. (Lond.)54, 367–383 (1921).Google Scholar
  61. Davis Jr., L., andR. Lorente De Nó: Contribution to the mathematical theory of the electrotonus. InLorente de Nó, R.: A study of the nerve Physiology. Stud. Rockefeller Inst. med. Res.131, 442–496 (1947).Google Scholar
  62. Day, M.: The release of substances like acetylcholine and adrenaline by the isolated rabbit heart. J. Physiol. (Lond.)134, 558–568 (1956).Google Scholar
  63. Délèze, J.: Perfusion of a strip of mammalian ventricle (effects of K-rich and Nadeficient solutions on transmembrane potentials). Circulat. Res.7, 3 (1959).Google Scholar
  64. Draper, M.H., andM. Mya-Tu: Comparative studies of the resting and action potentials in mammalian cardiac tissues. J. Physiol. (Lond.)130, 29–30 (1955).Google Scholar
  65. ——: A comparison of the conduction velocity in cardiac tissues of various mammals. J. exp. Physiol.64, 92–109 (1959).Google Scholar
  66. Draper, M. H., andS. Weidmann: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.)115, 74–94 (1951).Google Scholar
  67. Dudel, J., u.W. Trautwein: Das Aktionspotential und Mechanogramm des Herzmuskels unter dem Einfluß der Dehnung. Cardiologia (Basel)25, 344–362 (1954).Google Scholar
  68. ——: Über die Wirkung von Adrenalin auf das Ruhe- und Aktionspotential sowie den Membranwiderstand der Herzmuskelfaser. Experientia (Basel)12, 396 (1956).Google Scholar
  69. ——: Elektrophysiologische Messungen zur Strophanthinwirkung am Herzmuskel. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak.232, 393–407 (1958) (a).Google Scholar
  70. ——: Der Mechanismus der automatischen rhythmischen Impulsbildung der Herzmuskelfaser. Pflügers Arch. ges. Physiol.267, 553–565 (1958) (b).Google Scholar
  71. Engelmann, T. W.: Über die Leitung der Erregung im Herzmuskel. Pflügers Arch. ges. Physiol.11, 465–480 (1875).Google Scholar
  72. —: Vergleichende Untersuchungen zur Lehre von der Muskel- und Nervenelektricität. Pflügers Arch. ges. Physiol.15, 116–148 (1877).Google Scholar
  73. Fänge, R., H. Persson andS. Thesleff: Electrophysiological and pharmacological observations on Trypsin-disintegrated embryonic chick hearts cultured in vitro. Acta physiol. scand.38, 173–183 (1957).Google Scholar
  74. Fatt, P., andB. Katz: The effect of inhibitory nerve impulses in a crustacean muscle fibre. J. Physiol. (Lond.)121, 374–389 (1953).Google Scholar
  75. Fingl, E., L. A. Woodbury andH. H. Hecht: Effects of innervation and drugs upon direct membrane potentials of embryonic chick myocardium. J. Pharmacol. exp. Ther.104, 103–114 (1952).PubMedGoogle Scholar
  76. Fitzhugh, R.: Thresholds and plateaus in theHodgkin-Huxley nerve equations. J. gen. Physiol.43, 867–896 (1960).PubMedGoogle Scholar
  77. Fleckenstein, A.: Der Kalium-Natrium-Austausch als Energieprinzip in Muskel und Nerv. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  78. —,E. Wagner u.K. H. Göggel: Weitere Untersuchungen über die Abhängigkeit der Muskellänge vom Membranpotential. Pflügers Arch. ges. Physiol.253, 38–54 (1950).Google Scholar
  79. Frankenhaeuser, B., andA. L. Hodgkin: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.)137, 218–244 (1957).Google Scholar
  80. Garcia Ramos, J., etA. Rosenblueth: Los efectos de la acetilcolina y del ion potasio sobre el músculo auricular des mamifero. Arch. Inst. Cardiol. Méx.17, 384–405 (1947).PubMedGoogle Scholar
  81. Gaskell, W. H.: On the action of muscarin upon the heart, and on the electrical changes in the nonbeating cardiac muscle brought about by stimulation of the inhibitory and augmentor nerves. J. Physiol. (Lond.)8, 404–415 (1887).Google Scholar
  82. Gesteland, R. C., B. Howland, J. Y. Lettvin andW. H. Pitts: Comments on microelectrodes. Proc. Ire47, 1856–1862 (1959).Google Scholar
  83. Glomset, D. J., andA. T. A. Glomset: A morphologic study of the cardiac conduction system in ungulates, dog and man. Part II. The Purkinje system. Amer. Heart J.20, 677–701 (1940).Google Scholar
  84. Goldenberg, M., u.C. J. Rothberger: Automatie und dauernde Depolarisation einer Membranstelle der spezifischen Herzmuskulatur. Pflügers Arch. ges. Physiol.235, 597–608 (1935).Google Scholar
  85. ——: Über das Elektrogramm der spezifischen Herzmuskulatur. Pflügers Arch. ges. Physiol.237, 295–306 (1936).Google Scholar
  86. Goldmann, D. E.: Potential, impedance, and rectification in membranes. J. gen. Physiol.27, 37–60 (1943).Google Scholar
  87. Grosse-Schulte, E., u.W. Trautwein: Der Einfluß der extrazellulären Na-Konzentration auf das Membranpotential der spontan tätigen Faser aus dem Sinus des Kaninchenherzens. Pflügers Arch. ges. Physiol.272, 39 (1960).Google Scholar
  88. Haas, H. G., A. Blömer, M. Ley u.H. Schaefer: Experimentelle Untersuchungen am Hundeherzen zum Problem des Ventrikelgradienten. Cardiologia (Basel)37, 66–84 (1960).Google Scholar
  89. Hagiwara, S., andN. Saito: Voltage-current relations in nerve cell membrane of onchidium verruculatum. J. Physiol. (Lond.)148, 161–179 (1959).Google Scholar
  90. Hajdu, S.: Mechanism of staircase and contracture in ventricular muscle. Amer. J. Physiol.174, 371–380 (1953).PubMedGoogle Scholar
  91. Harris, E. J., andO. F. Hutter: The action of acetylcholine on the movements of potassium ions in the sinus venosus of the heart. J. Physiol. (Lond.)133, 58P (1956).Google Scholar
  92. Hecht, H. H.: Normal and abnormal transmembrane potentials of the spontaneously beating heart. Ann. N.Y. Acad. Sci.65, 700–733 (1957).PubMedGoogle Scholar
  93. Heintzen, P.: Untersuchungen über die Temperaturabhängigkeit der elektrischen Erregungsvorgänge am Froschherzen. Pflügers Arch. ges. Physiol.259, 381–399 (1954).Google Scholar
  94. —,H. G. Kraft u.O. Wiegmann: Über die elektrische und mechanische Tätigkeit des Herzstreifenpräparates vom Frosch in Abhängigkeit von der Temperatur. Z. Biol.108, 401–411 (1956).PubMedGoogle Scholar
  95. Hill, A. V.: The abrupt transition from rest to activity in muscle. Proc. roy. Soc. B136, 399–420 (1949).Google Scholar
  96. —: The “plateau” of full activity during a muscle twitch. Proc. roy. Soc. B141, 498–503 (1953).Google Scholar
  97. Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev.26, 339–409 (1951).Google Scholar
  98. —, andP. Horowicz: The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. (Lond.)148, 127–160 (1959).Google Scholar
  99. —, andA. F. Huxley: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.)116, 449–472 (1952) (a).Google Scholar
  100. ——: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 473–496 (1952) (b).Google Scholar
  101. ——: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 497–506 (1952) (c).Google Scholar
  102. ——: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952) (d).Google Scholar
  103. —— u.B. Katz: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. physiol.3, 129–150 (1949).Google Scholar
  104. ———: Measurement of current-voltage relations on the membrane of the giant axon of Loligo. J. Physiol. (Lond.)116, 424–448 (1952).Google Scholar
  105. — andR. D. Keynes: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.)128, 28–60 (1955) (a).Google Scholar
  106. ——: The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.)128, 61 (1955) (b).Google Scholar
  107. —, andW. A. H. Rushton: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B133, 444–479 (1946).Google Scholar
  108. Hoffman, B. F., A. de Carvalho andW. C. de Mello: Transmembrane potentials of single fibres of the atrioventricular node. Nature (Lond.)181, 66–67 (1958).Google Scholar
  109. —,P. F. Cranefield, E. Lepeschkin, B. Surawicz andH. C. Herrlich: Comparison of cardiac monophasic action potentials recorded by intracellular and suction electrodes. Amer. J. Physiol.196, 1297–1301 (1959).PubMedGoogle Scholar
  110. —,C. Y. Kao andE. E. Suckling: Refractoriness in cardiac muscle. Amer. J. Physiol.190, 473–481 (1957).PubMedGoogle Scholar
  111. —,A. A. Seibens andC. McC. Brooks: Effect of vagal stimulation on cardiac excitability. Amer. J. Physiol.169, 377–383 (1952).PubMedGoogle Scholar
  112. —, andE. E. Suckling: Cellular potentials of intact mammalian hearts. Amer. J. Physiol.170, 357–362 (1952).PubMedGoogle Scholar
  113. ——: Cardiac cellular potentials: Effect of vagal stimulation and acetylcholine. Amer. J. Physiol.173, 312–320 (1953) (a).PubMedGoogle Scholar
  114. Hoffman, B. F., andE. E. Suckling: Microelectrode studies of repolarization in the dog ventricle. Abstr. 19th internat. physiol. Congr. 1953 (b), pp. 470–471.Google Scholar
  115. ——: Effect of heart rate on cardiac membrane potentials and the unipolar electrogram. Amer. J. Physiol.179, 123–130 (1954).PubMedGoogle Scholar
  116. Hofmann, F. B.: Aktionsstrom und Mechanogramm bei Änderung der Schlagfrequenz des Herzens und bei Vagusreizung. Z. ges. exp. Med.50, 130–154 (1926).Google Scholar
  117. Holland, W. C., C. E. Dunn andM. E. Greig: Studies on permeability. VII. Effect of several substrates and inhibitors of acetylcholinesterase on permeability of isolated auricles to Na and K. Amer. J. Physiol.168, 546–556 (1952) (a).PubMedGoogle Scholar
  118. ———: Studies on permeability. VIII. Role of acetylcholine metabolism in the genesis of the electrocardiogram. Amer. J. Physiol.170, 339–345 (1952) (b).PubMedGoogle Scholar
  119. Hollander, P. B., andJ. L. Webb: Cellular membrane potentials and contractility of normal rat atrium and the effects of temperature, tension and stimulus frequency. Circulat. Res.3, 604 (1955).PubMedGoogle Scholar
  120. Howell, W. H., andW. W. Duke: The effect of vagus inhibition on the output of potassium from the heart. Amer. J. Physiol.21, 51–63 (1908).Google Scholar
  121. Hutter, O. F.: Mode of action of autonomic transmitters on the heart. Brit. med. Bull.13, 176–180 (1957).PubMedGoogle Scholar
  122. —, andD. Noble: The influence of anions on impulse generation and membrane conductance in Purkinje and myocardial fibres. J. Physiol. (Lond.)147, 16–17P (1959).Google Scholar
  123. ——: The chloride conductance of frog skeletal muscle. J. Physiol. (Lond.)151, 89–102 (1960).Google Scholar
  124. —, andS. M. Padsha: Effect of nitrate and other anions on the membrane resistance of frog skeletal muscle. J. Physiol. (Lond.)146, 117 (1959).Google Scholar
  125. —, u.W. Trautwein: Effect of vagal stimulation on the sinus venosus of the frog’s heart. Nature (Lond.)176, 512–513 (1955).Google Scholar
  126. ——: Vagal and sympathetic effects on the pacemaker fibres in the sinus venosus of the heart. J. gen. Physiol.39, 715–733 (1956).PubMedGoogle Scholar
  127. Huxley, A. F.: Ion movements during nerve activity. Ann. N.Y. Acad. Sci.81, 221–245 (1959).PubMedGoogle Scholar
  128. —, andR. E. Taylor: Local activation of striated muscle fibres. J. Physiol. (Lond.)144, 426–441 (1958).Google Scholar
  129. Johnson, E. A., andP. A. Robertson: The stimulatory action of acetylcholine on isolated rabbit atria. Brit. J. Pharmacol. Chemother.13, 304 (1958).Google Scholar
  130. Kahn, M.: Der physikalische Elektrotonus des Herzmuskels. Pflügers Arch. ges. Physiol.245, 235–264 (1941).Google Scholar
  131. Kavaler, F.: Membrane depolarization as a cause of tension development in mammalian ventricular muscle. Amer. J. Physiol.197, 968–970 (1959).PubMedGoogle Scholar
  132. Keynes, R. D.: The ionic movements during nervous activity. J. Physiol. (Lond.)114, 119–150 (1951).Google Scholar
  133. —: The ionic fluxes in frog muscle. Proc. roy. Soc. B142, 359–382 (1954).Google Scholar
  134. —, andP. R. Lewis: The sodium and potassium content of cephalopod nerve fibres. J. Physiol. (Lond.)114, 151–182 (1951).Google Scholar
  135. —, andG. W. Maisel: The energy requirement for sodium extrusion from a frog muscle. Proc. roy. Soc. B142, 383–392 (1954).Google Scholar
  136. —, andR. C. Swan: The permeability of frog muscle fibres to lithium ions. J. Physiol. (Lond.)147, 626 (1959).Google Scholar
  137. —, u.S. Weidmann: Zit. nachS. Weidmann, Elektrophysiologie der Herzmuskelfaser. Bern: Hans Huber 1956.Google Scholar
  138. Kisch, B., andJ. M. Bardet: Electronmicroscopic histology of the heart. New York: Brooklyn Medical Press 1951.Google Scholar
  139. Kleinfeld, M., E. Stein andS. Meyers: Effects of barium chloride on resting and action potentials of ventricular fibers of the frog. Circulat. Res.2, 488–493 (1954).PubMedGoogle Scholar
  140. Kotowski, H., H. Antoni u.A. Fleckenstein: Elektrophysiologische Studien zur Aufhebung der Kaliumlähmung des Froschmyokards durch ATP. Pflügers Arch. ges. Physiol.270, 85–102 (1959).Google Scholar
  141. Kraft, H. G., u.O. Wiegmann: Über die Abhängigkeit der elektrischen und mechanischen Tätigkeit des Herzstreifenpräparates des Frosches von der Schlagfrequenz. Z. Biol.109, 210–222 (1957).PubMedGoogle Scholar
  142. Krogh, A., A. L. Lindberg andB. Schmidt-Nielsen: The exchange of ions between cells and extracellular fluid. II. The exchange of potassium and calcium between the frog heart muscle and the bathing fluid. Acta physiol. scand.7, 221–237 (1944).Google Scholar
  143. Kuffler, S. W.: The relation of electric potential changes to contracture in skeletal muscle. J. Neurophysiol.9, 367–377 (1946).PubMedGoogle Scholar
  144. —, u.C. Eyzaguirre: Synaptic inhibition in an isolated nerve cell. J. gen. Physiol.39, 155–184 (1956).Google Scholar
  145. Kuschinsky, G., andH. Lüllmann: Über die Form cellulärer Potentiale vom Rattenvorhof in Abhängigkeit von Reizfrequenz und extrasystolischer Reizung. Pflügers Arch. ges. Physiol.267, 392–400 (1958).Google Scholar
  146. Lamb, J. F.: The action of 2–4 DNP on the auricular action potential duration and intracellular levels of Na+ and K+. J. Physiol. (Lond.)150, 4 P (1960).Google Scholar
  147. Lehnartz, E.: Potassium ions and vagus inhibition. J. Physiol. (Lond.)86, 37P (1936).Google Scholar
  148. Ling, G. N.: The role of phosphorus in the maintenance of the resting potential and selective ionic accumulation in frog muscle cells. In Phosphorus metabolism, vol. 2, pp. 748–795. Baltimore: Johns Hopkins Press 1952.Google Scholar
  149. —, andR. W. Gerard: The normal membrane potential of frog sartorius fibers. J. cell. comp. Physiol.34, 383–396 (1949).Google Scholar
  150. Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. I. Mitt. Pflügers Arch. ges. Physiol.189, 239–242 (1921).Google Scholar
  151. Lowry, O. H.: Electrolytes in the cytoplasm. Biol. Symp.10, 233–245 (1943).Google Scholar
  152. Lueken, B., u.E. Schütz: Die relative Refraktärphase des Herzens. III. Mitt. Reversibilität und Antagonismus. Z. Biol.99, 186–197 (1938).Google Scholar
  153. Lüttgau, H. C. andR. Niedergerke: The antagonism between Ca and Na ions on the frog’s heart. J. Physiol. (Lond.)143, 486–505 (1958).Google Scholar
  154. Maeno, T.: Über den Aktionsstrom des Reizleitungssystems des Hundeherzens. Fukuoka Ikwadaigaku Zasshi23, 774, dtsch. Zus.fass. S. 48 (1930). [Japanisch.]Google Scholar
  155. Marmont, G.: Studies on the axon membrane. I. A new method. J. cell. comp. Physiol.34, 351–382 (1949).Google Scholar
  156. Marshall, J. M., andE. M. Vaughan Williams: Pacemaker potentials. The excitation of isolated rabbit auricles by Acetylcholine at low temperatures. J. Physiol. (Lond.)131, 186–199 (1956).Google Scholar
  157. Matsuda, K. B. F. Hoffman, C. N. Elnner, M. Katz andC. McC. Brooks: Veratrine induced prolongation of repolarization in the mammalian heart. Abstr. 10 th internat. physiol. Congr. 1953, pp. 596–597.Google Scholar
  158. —,T. Hoshi andS. Kameyama: Action potential of the atrioventricular node. Tôhoku J. exp. Med.68, 1 (1958).Google Scholar
  159. Michaelis, L.: Die Permeabilität von Membranen. Naturwissenschaften14, 33–42 (1926).Google Scholar
  160. Mines, G. R.: On functional analysis by the action of electrolytes. J. Physiol. (Lond.)46, 188–235 (1913).Google Scholar
  161. Nastuk, W.: The electrical activity of the muscle cell membrane at the neuro-muscular membrane. J. cell. comp. Physiol.42, 249–272 (1953).Google Scholar
  162. Nastuk, W. L., andA. L. Hodgkin: The electrical activity of single muscle fibers. J. cell. comp. Physiol.35, 39–73 (1950).Google Scholar
  163. Niedergerke, R.: The “staircase” phenomenon and the action of calcium on the heart. J. Physiol. (Lond.)134, 569–583 (1956) (a).Google Scholar
  164. —: The potassium chloride contracture of the heart and its modification by calcium. J. Physiol. (Lond.)134, 584–599 (1956) (b).Google Scholar
  165. —: The rate of action of calcium ions on the contraction of the heart. J. Physiol. (Lond.)138, 506–515 (1957).Google Scholar
  166. Osterhout, W. J. V., E. B. Damon andA. G. Jacques: Dissimilarity of inner and outer protoplasmic surfaces in Valonia. J. gen. Physiol.11, 193–205 (1928).Google Scholar
  167. Otsuka, M.: Die Wirkung von Adrenalin auf Purkinje-Fasern von Säugetierherzen. Pflügers Arch. ges. Physiol.266, 512–517 (1958).Google Scholar
  168. Overton, E.: Beiträge zur allgemeinen Muskel- und Nervenphysiologie. Pflügers Arch. ges. Physiol.92, 346–386 (1902).Google Scholar
  169. Poche, R., u.E. Lindner: Untersuchungen zur Frage der Glanzstreifen des Herzmuskelgewebes beim Warmblüter und beim Kaltblüter. Z. Zellforsch.43, 104–120 (1955).PubMedGoogle Scholar
  170. Rayner, B., andM. Weatherall: Acetylcholine and potassium movements in rabbit auricles. J. Physiol. (Lond.)146, 392 (1959).Google Scholar
  171. Reiter, M.: Wirkung von Frequenz, Natriumentzug und Strophanthin auf Kontraktionskraft und Alkaligehalt des Herzmuskels. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak.227, 300–315 (1956).Google Scholar
  172. Robb, J. S.: Heart. Ann. Rev. Physiol.11, 387–434 (1949).Google Scholar
  173. Robertson, A. C., J. G. Foulks andE. E. Daniel: The effects of pentobarbital-induced myocardial depression on cardiac electrolyte distribution. J. Pharmacol. exp. Ther.122, 281–294 (1958).PubMedGoogle Scholar
  174. Robertson, W. van B., andF. W. Dunihue: Water and electrolyte distribution in cardiac muscle. Amer. J. Physiol.177, 292–298 (1954).PubMedGoogle Scholar
  175. —, andP. Peyser: Changes in water and electrolytes of cardiac muscle following epinephrine. Amer. J. Physiol.166, 277–283 (1951).PubMedGoogle Scholar
  176. Rosin, H., andA. Farah: Post-stimulation potentiation of contractility in the isolated auricle of the rabbit. Amer. J. Physiol.180, 75 (1955).PubMedGoogle Scholar
  177. Rothschuh, K. E.: Über elektrische Entladungsvorgänge an der verletzten Skelettmuskelfaser und ihre Beziehungen zum Vorgang der Degeneration, der Regeneration und des Absterbens. Pflügers Arch. ges. Physiol.252, 445–467 (1950) (a).Google Scholar
  178. —: Über den Aufbau des Herzmuskels aus “elektrophysiologischen Elementen”. Verh. dtsch. Ges. Kreisl.-Forsch.16, 226–231 (1950) (b).Google Scholar
  179. —: Über den funktionellen Aufbau des Herzens aus elektrophysiologischen Elementen und über den Mechanismus der Erregungsleitung im Herzen. Pflügers Arch. ges. Physiol.253, 238–251 (1951).Google Scholar
  180. —: Elektrophysiologie des Herzens. Darmstadt: Steinkopff 1952.Google Scholar
  181. Rothschuh, K. E.: Vorkommen und Funktionen des Acetylcholins im Herzen. Klin. Wschr.1954, 1–7.Google Scholar
  182. Samojloff, A.: Die Vagus- und Muscarinwirkung auf die Stromkurve des Froschherzens. Pflügers Arch. ges. Physiol.155, 471–522 (1914).Google Scholar
  183. Sandow, A.: Excitation-contraction coupling in muscular response. Yale J. Biol. Med.25, 176–201 (1952).PubMedGoogle Scholar
  184. Sano, T., M. Ono andT. Shimamoto: Intrinsic deflections. Local excitation and transmembrane action potentials. Circulat. Res.4, 444–449 (1956).PubMedGoogle Scholar
  185. —,M. Tasaki, M. Ono, H. Tsuchihashi, N. Takayama andT. Shimamoto: Resting and action potentials in the region of the atrioventricular node. Proc. Japan Acad.34, 558–563 (1958).Google Scholar
  186. Schaefer, H.: Theorie des Potentialabgriffs beim Elektrokardiogramm, auf der Grundlage der Membrantheorie. Pflügers Arch. ges. Physiol.245, 72–97 (1942).Google Scholar
  187. —: Das Elektrokardiogramm. Theorie und Klinik. Berlin-Göttingen-Heidelberg: Springer 1951.Google Scholar
  188. —,A. Pena u.P. Schölmerich: Der monophasische Aktionsstrom von Spitze und Basis des Warmblüterherzens und die Theorie der T-Welle des EKG. Pflügers Arch. ges. Physiol.246, 728–745 (1943).Google Scholar
  189. —, u.W. Trautwein: Über die elementaren elektrischen Prozesse im Herzmuskel und ihre Rolle für eine neue Theorie des Elektrokardiogramms. Pflügers Arch. ges. Physiol.251, 417–448 (1949).Google Scholar
  190. ——: Weitere Versuche über die Natur der Erregungswelle im Myokard des Hundes. Plfügers Arch. ges. Physiol.253, 152–164 (1951).Google Scholar
  191. Schatzmann, H. J.: Herzglycoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv. physiol. pharmacol. Acta11, 346–354 (1953).PubMedGoogle Scholar
  192. Schellong, F.: Der Einfluß des Digitalis auf die Erregbarkeit des Herzmuskels, den Erregungsvorgang und seine Fortpflanzung. IX. Mitt. Z. ges. exp. Med.75, 767–782 (1931).Google Scholar
  193. Scher, A. M., A. C. Young, A. L. Malmgren andR. R. Paton: Spread of electrical activity through the wall of the ventricle. Circulat Res.1, 539 (1953).PubMedGoogle Scholar
  194. Schmidt, R. F.: Über die Acetylcholin-Empfindlichkeit verschiedener Herzabschnitte. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak.233, 531–541 (1958).Google Scholar
  195. —: Versuche mit Aconitin zum Problem der spontanen Erregungsbildung im Herzen. Pflügers Arch. ges. Physiol.271, 526–536 (1960).Google Scholar
  196. —, u.J. J. Chang: Aktionspotential und Mechanogramm von Purkinje Fäden in tiefer Temperatur. Pflügers Arch. ges. Physiol.272, 393–399 (1961).Google Scholar
  197. Schreiber, S.: Potassium and sodium exchange in the working frog heart. Effects of overwork, external concentrations of potassium and Ouabain. Amer. J. Physiol.185, 337–347 (1956).PubMedGoogle Scholar
  198. Schütz, E.: Elektrophysiologie des Herzens bei einphasischer Ableitung. Ergebn. Physiol.38, 493–620 (1936).Google Scholar
  199. Sjöstrand, F. S., andE. Andersson: Electron microscopy of the intercalated dics of cardiac muscle tissue. Experentia (Basel)10, 369–370 (1954).Google Scholar
  200. Solms, S. J., W. L. Nastuk andJ. T. Alexander: Development of a high-fidelity preamplifier for use in the recording of bioelectric potentials with intracellular electrodes. Rev. sci. Instrum.24, 960–967 (1953).Google Scholar
  201. Sollner, K., S. Dray, E. Grim andR. Neihof: Membranes of high electrochemical activity in studies of biological interest. Electrochemistry in Biology and Medicine, ed.T. Shedlovsky. New York: Wiley 1955.Google Scholar
  202. Spadolini, I., eA. Giachetti: Sulle condizioni fondametali che regolano nel cuere Vazione difa sica dell’acetilcolina come ormone locale e come mediatore degli impulsi vagali. Arch. Fisiol.52, 329–353 (1953).PubMedGoogle Scholar
  203. Spurr, G. B., andG. Barlow: Influence of prolonged hypothermia and hyperthermia on myocardial sodium, potassium and chloride. Circulat. Res.7, 210–218 (1959).PubMedGoogle Scholar
  204. Straub, R.: Die Wirkungen von Veratridin und Ionen auf das Ruhepotential markhaltiger Nervenfasern des Frosches. Helv. physiol. pharmacol. Acta14, 1–28 (1956).PubMedGoogle Scholar
  205. Stutz, H., E. Feigelson, J. Emerson andR. J. Bing: The effect of digitalis (Cedilanid) on the mechanical and electrical activity of extracted and nonextracted heart muscle preparations. Circulat. Res.2, 555–564 (1954).PubMedGoogle Scholar
  206. Szent-Györgyi, A.: Chemical physiology of contraction in body and heart muscle. New York: Academic Press 1953.Google Scholar
  207. Tasaki, I.: Demonstration of two stable states of the nerve membrane in potassium-rich media. J. Physiol. (Lond.)148, 306–331 (1959).Google Scholar
  208. Taylor, R. E.: The contractile process is not associated with potential changes. J. cell. comp. Physiol.42, 103–123 (1953).Google Scholar
  209. Trautwein, W.: Über die Veränderungen der elementaren Daten der elektrischen Erregungswelle des Herzens bei der Insuffizienz des Myocards. Pflügers Arch. ges. Physiol.252, 573–589 (1950).Google Scholar
  210. —: Physiologie der Herzirregularitäten. InSpang, Rhythmusstörungen des Herzens. Stuttgart: Georg Thieme 1957.Google Scholar
  211. —, u.J. Dudel: Aktionspotential und Mechanogramm des Warmblüterherzmuskels als Funktion der Schlagfrequenz. Pflügers Arch. ges. Physiol.260, 24–39 (1954) (a).Google Scholar
  212. ——: Aktionspotential und Mechanogramm des Katzenpapillarmuskels als Funktion der Temperatur. Pflügers Arch. ges. Physiol.260, 104–115 (1954) (b).Google Scholar
  213. —— Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflügers Arch. ges. Physiol.266, 324–334 (1958) (a).Google Scholar
  214. ——: Hemmende und „erregende” Wirkungen des Acetylcholin am Warmblüterherzen. Zur Frage der spontanen Erregungsbildung. Pflügers Arch. ges. Physiol.266, 653–664 (1958) (b).Google Scholar
  215. Trautwein, W., U. Gottstein u.J. Dudel: Der Aktionsstrom der Myokardfaser im Sauerstoffmangel. Pflügers Arch. ges. Physiol.260, 40–60 (1954).Google Scholar
  216. —— u.K. Federschmidt: Der Einfluß der Temperatur auf den Aktionsstrom des excidierten Purkinje-Fadens, gemessen mit einer intracellulären Elektrode. Pflügers Arch. ges. Physiol.258, 243–260 (1953).Google Scholar
  217. —,S. W. Kuffler u.Ch. Edwards: Changes in membrane characteristics of heart muscle during inhibition. J. gen. Physiol.40, 134–145 (1956).Google Scholar
  218. — u.R. F. Schmidt: Zur Membranwirkung des Adrenalin an der Herzmuskelfaser. Pflügers Arch. ges. Physiol.271, 715–726 (1960).Google Scholar
  219. —,W. J. Whalen u.E. Grosse-Schulte: Elektrophysiologischer Nachweis spontaner Freisetzung von Acetylcholin im Vorhof des Herzens. Pflügers Arch. ges. Physiol.270, 560–570 (1960).Google Scholar
  220. —, u.P. N. Witt: Der Einfluß des Strophanthins auf das Ruhe- und Aktionspotential der geschädigten Herzmuskelfaser. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak.216, 197–199 (1952).Google Scholar
  221. —, u.K. Zink: Über Membran- und Aktionspotentiale, einzelner Myokardfasern des Kalt- und Warmblüterherzens. Pflügers Arch. ges. Physiol.256, 68–84 (1952).Google Scholar
  222. Ulbricht, W.: Zustand des Na-Transportsystems und elektrotonische Schwellenänderungen an markhaltigen Einzelfasern. Pflügers Arch. ges. Physiol.267, 478–490 (1958).Google Scholar
  223. Umrath, K.: Potentialmessungen an Nitella mucronata mit besonderer Berücksichtigung der Erregungserscheinungen. Protoplasma9, 576–597 (1930).Google Scholar
  224. Vaughan Williams, E. M.: Some observations concerning the mode of action of acetylcholine in isolated rabbit atria. J. Physiol. (Lond.)140, 327–346 (1958).Google Scholar
  225. Vaughan Williams, E. M.: A method of mounting micro-electrodes for intracellular recording from contracting muscle. J. Physiol. (Lond.)147, 3 P (1959) (a).Google Scholar
  226. —: A study of intracellular potentials and contractions in atria, including evidence for an after-potential. J. Physiol. (Lond.)149, 78–92 (1959) (b).Google Scholar
  227. Wahlin, B.: Das Reizleitungssystem und die Nerven des Säugetierherzens. Eine anatomische, genetische und experimentelle Studie. Gedruckte Dissertation. Histol. Institut, Upsala 1935.Google Scholar
  228. Ware jr., F.,A. L. Bennett andA. R. McIntyre: Membrane potentials in normal, isolated, perfused frog hearts. Amer. J. Physiol.190, 194–200 (1957).PubMedGoogle Scholar
  229. ———: Effects of calcium deficiency on cell membrane potentials of isolated frog hearts. Amer. J. Physiol.198, 547–551 (1960).PubMedGoogle Scholar
  230. Webb, J. L., andP. B. Hollander: The action of acetylcholine and epinephrine on the cellular membrane potentials and contractility of rat atrium. Circulat. Res.4, 332 (1956) (a).PubMedGoogle Scholar
  231. ——: Metabolic aspects of the relationship between the contractility and membrane potentials of the rat atrium. Circulat. Res.4, 618–626 (1956) (b).PubMedGoogle Scholar
  232. Weidmann, S.: Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (Lond.)115, 227–236 (1951).Google Scholar
  233. —: The electrical constants of Purkinje fibres. J. Physiol. (Lond.)118, 348–360 (1952).Google Scholar
  234. —: The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol. (Lond.)127, 213–224 (1955a).Google Scholar
  235. —: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Lond.)129, 568–582 (1955b).Google Scholar
  236. —: Rectifier properties of Purkinje fibers. Amer. J. Physiol.183, 671 (1955c).Google Scholar
  237. —: Electrophysiologie der Herzmuskelfaser. Bern u. Stuttgart: Hans Huber 1956a.Google Scholar
  238. —: Elektrophysiologie der Herzmuskelfaser. Bern u. Stuttgart: Hans Huber 1956a.Google Scholar
  239. —: Shortening of the cardiac action potential due to a brief injection of KCl following the onset of activity. J. Physiol. (Lond.)132, 157–163 (1956b).Google Scholar
  240. —: Transport of ions across cardiac membranes. Metabolic aspects of transport across cell membranes byQ. R. Murphy. Madison: University of Wisconsin Press 1957 (a).Google Scholar
  241. —: Resting and action potentials of cardiac muscle. Ann. N.Y. Acad. Sci.65, 663–678 (1957) (b).PubMedGoogle Scholar
  242. Weidmann, S.: Effect of increasing the calcium concentration during a single heart-beat. Experientia (Basel)15, 128 (1959).Google Scholar
  243. —: Die funktionelle Bedeutung der Glanzstreifen im Myocard. Helv. physiol. pharmacol. Acta19, C 35–36 (1961).Google Scholar
  244. West, T. C.: Auricular cellular potentials: ultramicroelectrode recording of drug effects on nodal and extranodal regions. Fed. Proc.14, 393 (1955).Google Scholar
  245. Wiggers, C. J.: Physiology in Health and Disease. Philadelphia: Lea & Febiger 1949.Google Scholar
  246. Wiggers, H. C.: The sequence of ventricular surface excitation determined by registration of monophasic action potentials. Amer. J. Physiol.118, 333–344 (1937).Google Scholar
  247. Wilbrandt, W., u.H. Koller: Die Calcium-Wirkung am Froschherzen als Funktion des Ionengleichgewichts zwischen Zellmembran und Umgebung. Helv. physiol. pharmacol. Acta6, 208–221 (1948).PubMedGoogle Scholar
  248. Wilde, W. S.: The pulsatile nature of the release of potassium from heart muscle during the systole. Ann. N. Y. Acad. Sci.65, 693–699 (1957).PubMedGoogle Scholar
  249. Wilde, W. S., andJ. M. O’Brien: The time relation between potassium-(K42) outflux, action potential, and the contraction phase of heart muscle as revealed by the effluogram. Abstr. 19th internat. physiol. Congr. 1953, pp. 889–890.Google Scholar
  250. ——, S. 64.Google Scholar
  251. Wilde, W. S., andJ. M. O’Brien andI. Bay: Time relation between potassium K42 outflux, action potential and contraction phase of heart muscle as revealed by the effluogram. Peaceful uses of atomic energy: Proceedings of the Internat. Conference in Geneva, August 1955, United Nations Publication No. ix. 1. Vol. 12, pp. 704.Google Scholar
  252. Wood, J. C., andH. L. Conn: Potassium transfer kinetics in the isolated dog heart. Influence of contraction rate, ventricular fibrillation, high serum potassium and acetylcholine. Amer. J. Physiol.195, 451–458 (1958).PubMedGoogle Scholar
  253. Woodbury, J. W., andA. J. Brady: Intracellular recording from moving tissues with a flexibly mounted ultramicroelectrode. Science123, 100–101 (1956).PubMedGoogle Scholar
  254. —, andH. H., Hecht: Effects of cardiac glycosides upon the electrical activity of single ventricular fibers of the frog heart, and their relation to the digitalis effect of the electrocardiogram. Circulation6, 172–182 (1952).PubMedGoogle Scholar
  255. —— andA. R. Christopherson: Membrane resting and action potentials of single cardiac muscle fibers of the frog ventricle. Amer. J. Physiol.164, 307–318 (1951).PubMedGoogle Scholar
  256. —,J. Lee, A. J. Brady andK. A. Merendino: Transmembranal potentials from the human heart. Circulat. Res.5, 179 (1957).PubMedGoogle Scholar
  257. Woodbury, L. A., J. W. Woodbury andH. H. Hecht: Membrane resting and action potentials from single cardiac muscle fibers. Circulation1, 264–266 (1950).PubMedGoogle Scholar
  258. Yoshida, H.: Zur Deutung des Elektrokardiogramms. I. Das Elektrogramm der Ventrikelspitze des Froschherzens. Z. Biol.84, 51–78 (1926).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • Wolfgang Trautwein
    • 1
  1. 1.Physiologisches Institut, Extraordinariat für PhysiologieUniversität HeidelbergHeidelbergDeutschland

Personalised recommendations