Advertisement

Über die verschiedenen molekularen Mechanismen der Bewegungen von Zellen

  • Hartmut Hoffmann-Berling
Conference paper
Part of the Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie book series (ERGEBPHYSIOL, volume 51)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Afzelius, B.: Electron microscopy of the sperm tail. J. biophys. biochem. Cytol.5, 269 (1959).PubMedCrossRefGoogle Scholar
  2. Alexandrow, W. J. u.N. Y. Arronet: Kletochnaia model. Dokl. Akad. Nauk. USSR.110, 457 (1956).Google Scholar
  3. Ames, B. N., D. T. Dubin andS. M. Rosenthal: Polyamines in bacterial viruses. Science127, 814 (1958).PubMedCrossRefGoogle Scholar
  4. Barany, M., andK. Barany: Studies on „active centres” of L-myosin. Biochim. biophys. Acta35, 293 (1959).PubMedCrossRefGoogle Scholar
  5. Belar, K.: Beiträge zur Kenntnis des Mechanismus der indirekten Kernteilung. Naturwissenschaften15, 725 (1927).CrossRefGoogle Scholar
  6. Bendall, J. R.: A factor modifying the shortening of muscle fibre bundles by ATP. Proc. roy. Soc. B139, 523 (1954).CrossRefGoogle Scholar
  7. —: Myokinase as a relaxing factor in muscle. Nature (Lond.)173, 548 (1954).CrossRefGoogle Scholar
  8. Bettex-Galland, M., andE. F. Lüscher: Extraction of an actomyosin-like protein from human thrombocytes. Nature (Lond.)184, 276 (1959).CrossRefGoogle Scholar
  9. Bishop, D.: Motility of the sperm flagellum. Nature (Lond.)182, 1638 (1958) (a).CrossRefGoogle Scholar
  10. —: Mammalian sperm models, reactivated by ATP Fed. Proc.17, 15 (1958) (b).Google Scholar
  11. Bishop, D.: Relaxing factors in ATP-induced motility of sperm models. Anat. Rec.132, 414 (1958) (c).Google Scholar
  12. —, andH. Hoffmann-Berling: Extracted mammalian sperm models. J. cell. comp. Physiol.53, 445 (1959).PubMedCrossRefGoogle Scholar
  13. Born, G. V. R.: The break-down of adenosine, triphosphate in blood platelets during clotting. J. Physiol. (Lond.)133, 61 P (1956).Google Scholar
  14. Bozler, E.: Mechanism of relaxation of extracted muscle fibres. Amer. J. Physiol.167, 276 (1951).PubMedGoogle Scholar
  15. Bradfield, G.: Fibre patterns in animal flagella and cilia. Symp. Soc. exp. biol.9, 306 (1955).Google Scholar
  16. Burnashewa, S. A.: Spermosin, das kontraktile Protein der Spermienzellen. Biokhimija23, 558 (1958).Google Scholar
  17. Dan, K., andJ. Dan: Behavior of the cell surface during cleavage. Biol. Bull.93, 163 (1947).PubMedCrossRefGoogle Scholar
  18. T. Yanagita andL. Sugiyama: Behavior of the cell surface during cleavage. Protoplasma28, 66 (1937).CrossRefGoogle Scholar
  19. Dukes, P. P., andL. M. Kozloff: Phosphatases in bacteriophages T2, T4, und T5. J. biol. chem.234, 534 (1958).Google Scholar
  20. Engelhardt, W. A.: Enzymology and mechanochemistry of tissues and cells. Proc. Intern. Symp. Enzyme Chemistry, Tokyo 1957, 34. 1958.Google Scholar
  21. —, u.S. A. Burnashewa: Lokalisierung des Protein Spermosin in Spermienzellen. Biochimija22, 513 (1957). [Russisch.]Google Scholar
  22. Garen, A., andL. M. Kozloff: The initiation of bacteriophage infection. In: The Viruses, S. 203. New York: Academic Press 1959.Google Scholar
  23. Goldacre, R., andR. I. Lorch: Folding and unfolding of protein molecules in relation to protoplasmic streaming and ameboid movement. Nature (Lond.)166, 497 (1950).CrossRefGoogle Scholar
  24. Gray, J.: Ciliary movement. Cambridge 1928.Google Scholar
  25. —: The motility of sea urchin spermatozoa. J. exp. Biol.32, 775 (1955).Google Scholar
  26. —: The motility of bull spermatozoa. J. exp. Biol.35, 96 (1958).Google Scholar
  27. Hanson, J., andH. E. Huxley: Structural basis of contraction in striated muscle. Symp. Soc. exp. Biol.9, 228 (1955).Google Scholar
  28. Hasselbach, W.: Umwandlung von Aktomyosin-ATPase in L-Myosin-ATPase. Z. Naturforsch.7b, 163 (1952).Google Scholar
  29. —: Die Bindung von ATP, anorganischen Phosphaten und Erdalkalien an die Strukturproteine des Muskels. Biochim. biophys. Acta25, 562 (1957).PubMedCrossRefGoogle Scholar
  30. Hasselbach, W.: Vortrag auf dem Physiol. Kongr. in Freiburg 1960.Google Scholar
  31. H. Hofschneider, E. Kasper u.R. Lutz: Die Sol-Gel-Umwandlung von gereinigtem Aktomyosin. Z. Naturforsch.8b, 204 (1953).Google Scholar
  32. —, u.H. H. Weber: Einfluß des Marsh-Bendall-Faktors auf die Kontraktion des Fasermodells. Biochim. biophys. Acta11, 160 (1953).PubMedCrossRefGoogle Scholar
  33. Heilbrunn, L.: Protoplasmic viscosity of amoeba at different temperatures. Protoplasma8, 58 (1930) (a).CrossRefGoogle Scholar
  34. —: The absolute viscosity of amoeba protoplasm. Protoplasma8, 65 (1930) (b).CrossRefGoogle Scholar
  35. Hershey, A. D.: Nucleic acid economy in bacteria infected with the bacteriophage T 2. J. gen. Physiol.37, 1 (1954).CrossRefGoogle Scholar
  36. —, andM. Chase: Independent functions of viral protein and nucleic acid in growth of bacteriophages. J. gen. Physiol.36, 39 (1953).CrossRefGoogle Scholar
  37. Hoffmann-Berling, H.: ATP als Betriebsstoff von Zellbewegungen. Biochim. biophys. Acta14, 182 (1954) (a).PubMedCrossRefGoogle Scholar
  38. —: Bedeutung des ATP für die Zell- und Kernteilungsbewegung in der Anaphase. Biochim. biophys. Acta15, 226 (1954) (b).PubMedCrossRefGoogle Scholar
  39. —: Die Glycerin-Wasser extrahierte Telophasezelle als Modell der Zytokinese. Biochim. biophys. Acta15, 332 (1954) (c).PubMedCrossRefGoogle Scholar
  40. —: Geißelmodelle und ATP. Biochim. biophys. Acta16, 146 (1955).PubMedCrossRefGoogle Scholar
  41. —: Das kontraktile Eiweiß undifferenzierter Zellen. Biochim. biophys. Acta19, 453 (1956).PubMedCrossRefGoogle Scholar
  42. Hoffmann-Berling, H.: Der Mechanismus eines neuen Kontraktionszyklus. Biochim. biophys. Acta27, 247 (1958).PubMedCrossRefGoogle Scholar
  43. —, u.H. H. Weber: Isolierung des kontraktilen Eiweiß aus Sarkomzellen. Naturwissenschaften42, 608 (1955).CrossRefGoogle Scholar
  44. Holtzer, H., J. Abbott andM. W. Cavanaugh: Some properties of embryonic cardiac myoblasts.16, 595 (1959).Google Scholar
  45. Huxley, A. F.: Local activation of muscle Ann. N. Y. Acad. Sci.81, 446 (1959).PubMedCrossRefGoogle Scholar
  46. Jacquez, J., andJ. Biesele: A study of Michels film on meiosis in psophus stridulus. Exp. Cell. Res.6, 17 (1954).PubMedCrossRefGoogle Scholar
  47. Katchalsky, A., andM. Zwick: Mechanochemistry and ion exchange. J Polymer. Sci.16, 221 (1955).CrossRefGoogle Scholar
  48. Kellenberger, E., u.W. Arber: Struktur des Schwanzes der Phagen T2 und T4 und der Mechanismus der irreversiblen Adsorption. Z. Naturforsch.10b, 698 (1955).Google Scholar
  49. Kinoshita, S.: The mode of action of metal-chelating substances on sperm motility. J. Fac. Sc. Tokyo, Sect. IV8, 219 (1958).Google Scholar
  50. —: On the identity of the motility-inducing factor of flagellum and the relaxing factor of muscle. J. Fac. Sci. Tokyo, Sect. IV8, 427 (1959).Google Scholar
  51. Kjelley, W. W., H. M. Kalckar andL. B. Bradley: The hydrolysis of purine and pyrimidine nucleoside triphosphates by myosin. J. biol. Chem.219, 95 (1956).Google Scholar
  52. Kozloff, L. M., andM. Lute: Contractile protein in the tail of the bacteriophage T 2. J. biol. Chem.234, 539 (1958).Google Scholar
  53. Kuhn, W., u.B. Hargitay: Z. Elektrochem.55, 490 (1951).Google Scholar
  54. Kuhn, W., A. Ramel u.D. H. Walters: Erzeugung von mechanischer aus verschiedenen Formen von chemischer Energie. Proc. 4. Intern. Congr. Biochem., Wien 1958.Google Scholar
  55. Lettré, H.: Some investigation on cell behavior. Cancer Res.12, 847 (1952).PubMedGoogle Scholar
  56. M. A. Albrecht uR. Lettré: Verhalten von Fibroblasten unter aeroben und anaeroben Bedingungen. Naturwissenschaften38, 504 (1951).CrossRefGoogle Scholar
  57. Levine, L.: Contractility of glycerinated vorticellae. Biol. Bull.111, 319 (1956).Google Scholar
  58. Lewis, W.: The role of a superficial plasmagel layer in changes of form, locomotion and division of cells in tissue cultures. Arch. exp. Zellforsch.23, 1 (1939).Google Scholar
  59. Lewis, W.: The structure of protoplasm.W. Seifritz, Ed. Iowa 1942.Google Scholar
  60. Loewy, A.: An actomyosin like substance from the plasmodium of a myxomycete. J. cell. comp. physiol.40, 127 (1952).CrossRefGoogle Scholar
  61. Manton, I.: Fine structure of plant cilia. Symp. Soc. exp. Biol.6, 306 (1952).Google Scholar
  62. Marsh, B.: The effects of ATP on the fibre volume of a muscle homogenate. Biochim. biophys. Acta9, 247 (1952).PubMedCrossRefGoogle Scholar
  63. Mazia, D.: The organization of the mitotic apparatus. Symp. Soc. exp. Biol.9, 335 (1955).Google Scholar
  64. —: Cell division. Harvey Lect.53, 130 (1959).Google Scholar
  65. —, andK. Dan: The isolation and biochemical characterization of the mitotic apparatus. Proc. Nat. Acad. Sci. (Wash.)38, 826 (1952).CrossRefGoogle Scholar
  66. Metz, C. B., D. Pitelka andJ. A. Westfall: The fibrillar system of ciliates. Biol. Bull. 104 (1953).Google Scholar
  67. Mitchison, M.: Cell membranes and cell division. Symp. Soc. exp. Biol.6, 105 (1952).Google Scholar
  68. —, andM. M. Swann: The mechanical properties of the cell surface. J. exp. Biol.32, 734 (1955).Google Scholar
  69. Morales, M.: In Enzymes, Units of biological structure and function. O. Gaebler Ed. New York: 1956.Google Scholar
  70. Nagai, T., M. Makinose u.W. Hasselbach: Der physiologische Erschlaffungsfaktor und die Muskelgrana. Biochim. biophys. Acta (im Druck).Google Scholar
  71. Nakajima, H.: Properties of a contractile protein in a myxomycete plasmodium. Protoplasma52, 413 (1960).CrossRefGoogle Scholar
  72. Nakajima, O.: An ATP-sensitive protein of kidney. Jap. Circulat. J.22, 641 (1958).Google Scholar
  73. Nelson, L.: Enzyme distribution in fragmented bull spermatozoa. Biochim. biophys. Acta14, 312 (1954).PubMedCrossRefGoogle Scholar
  74. —: ATPase in rat spermatozoa. Biochim. biophys. Acta27, 634 (1958).PubMedCrossRefGoogle Scholar
  75. Ore, A., andE. Pollard: Physical mechanism of bacteriophage injection. Science124, 430 (1956).PubMedCrossRefGoogle Scholar
  76. Peakarek, J.: Absolute Viscositätsmessung mit Hilfe der Brown’schen Molekularbewegung. Protoplasma10, 510 (1930).CrossRefGoogle Scholar
  77. Porter, K. R., andD. E. Palade: Studies on the endoplasmic reticulum. J. biophys. biochem. Cytol.3, 269 (1957).PubMedCrossRefGoogle Scholar
  78. Portzehl, H.: Gemeinsame Eigenschaften von Zell- und Muskelkontraktilität. Biochim. biophys. Acta14, 195 (1954).PubMedCrossRefGoogle Scholar
  79. —: Die Bindung des Erschlaffungsfaktors von Marsh an die Muskelgrana. Biochim. biophys. Acta26, 373 (1957).PubMedCrossRefGoogle Scholar
  80. Randall, J. T.: Fine structure of some ciliate protozoa. Nature (Lond.)178, 9 (1956).CrossRefGoogle Scholar
  81. Ris, H.: Quantitative studies of the anaphase movement in the aphid tamalia. Biol. Bull.85, 164 (1943).CrossRefGoogle Scholar
  82. Schwarzenbach, G., u.A. E. Martell: Adenosindiphosphat und Triphosphat als Komplexbildner für Calcium und Magnesium. Helv. chim. Acta39, 653 (1956).CrossRefGoogle Scholar
  83. Selman, C., andC. Waddington: The mechanism of cleavage of the newt’segg. J. exp. Biol.32, 700 (1955).Google Scholar
  84. Swann, M. M., andJ. M. Mitchison: The mechanism of cleavage in animal cells. Biol. Rev.33, 103 (1958).CrossRefGoogle Scholar
  85. Tibbs, J.: ATPase activity of algal and sperm flagella. Biochim. biophys. Acta28, 636 (1958).PubMedCrossRefGoogle Scholar
  86. —: ATPase activity of perch sperm flagella. Biochim. biophys. Acta33, 220 (1959).PubMedCrossRefGoogle Scholar
  87. T’so, P., L. Bonner, L. Eggmann andJ. Vinograd: Observations on an ATP-sensitive protein system from the plasmodia of a myxomycete. J. gen. Physiol.39, 325 (1956).CrossRefGoogle Scholar
  88. Weber, A.: Ultracentrifugal separation of L-myosin and action in actomyosin sol under the influence of ATP. Biochim. biophys. Acta19, 345 (1956).PubMedCrossRefGoogle Scholar
  89. Weber, H. H.: Muskelphysiologie Fortschr. Zool.10, 304 (1956).Google Scholar
  90. Wohlfahrt-Botterman, K.: Funktion der Trichocysten. Arch. Protistenk.98, 169 (1953).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • Hartmut Hoffmann-Berling
    • 1
  1. 1.Institut für Physiologie im Max Planck-Institut für Medizinische Forschung HeidelbergHeidelburgDeutschland

Personalised recommendations