Deformation and microstructure in uniaxially stretched PE

  • B. Heise
  • H. -G. Kilian
  • W. Wulff
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 67)


The stress-strain relation for uniaxially stretched PE ist discussed on the base for theory of real molecular networks with the crystals taking as active fillers. Microstructure changes by solid state deformation of the crystals, their local melting and recrystallization. The solid state transformations influence the deformation behaviour up to draw ratios of λ<3.

At higher draw ratios PE is transformed homogeneously with the crystals acting at least as plastic fillers. With a simple consideration of these structural processes a first approach to a quantitation description of stress-strain relationship is achieved.


Draw Ratio Orientation Parameter Solid State Transformation Draw Direction Solid State Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


original length of a sample


length of a stretched sample


draw ratio

\(\dot p\)



number of particles in a gas


Boltzmann constant


temperature (K)


number of crosslinks in a network

ψ (λ)=(λ2+2/λ−3)/2

deformation function


derivative of ψ(λ)


force per unit area

a, b

van der Waals parameters

a0, b0

parameters of real network theory


theoretical maximal elongation of a network


orientation parameter


degree of crystallinity


parametric function designing relative amount of not sheared crystals


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Heise, B., H.-G. Kilian, M. Pietralla, Progr. Colloid & Polymer Sci. 62, 16 (1977).CrossRefGoogle Scholar
  2. 2).
    Martis, K. W., W. Wilke, Progr. Colloid & Polymer Sci. 62, 44 (1977).Google Scholar
  3. 3) a).
    Kanig, G., Progr. Colloid & Polymer Sci. 57, 176 (1975).Google Scholar
  4. 3) b).
    Kanig, G., Colloid & Polymer Sci. 251, 15 (1973).Google Scholar
  5. 4).
    Hosemann, R., J. Loboda-Čačkovič, H. Čačkovič, Ber. Bunsengesellschaft f. phys. Chemie 77, 1044 (1973).Google Scholar
  6. 5).
    Kilian, H.-G., Physikalische Blätter 35, 642 (1979).Google Scholar
  7. 6).
    Kilian, H.-G. (to be published in Polymer).Google Scholar
  8. 7).
    Pietralla, M., Colloid & Polymer Sci. 254, 249 (1976).CrossRefGoogle Scholar
  9. 8).
    Kilian, H.-G., D. Klattenhoff, Progr. Colloid & Polymer Sci. 64, 303 (1978).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1980

Authors and Affiliations

  • B. Heise
    • 1
  • H. -G. Kilian
    • 1
  • W. Wulff
    • 1
  1. 1.Experimentelle Physik Oberer EselsbergUniversität UlmUlm

Personalised recommendations