Advertisement

Adsorption of carboxylic acids and other chain molecules from n-heptane onto graphite

  • M. Liphard
  • P. Glanz
  • G. Pilarski
  • G. H. Findenegg
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 67)

Abstract

The adsorption from dilute solutions of a series of carboxylic acids (decanoic, dodecanoic, tetradecanoic, and octadecanoic) and of other chain molecules (1-decanol, 1-bromo-octadecane) from n-heptane onto graphitised carbon black has been studied by measuring (i) the surface excess amount and (ii) the enthalpy of displacement.All solute molecules are adsorbed with their major axis parallel to the graphite basal plane and exhibit a tendency to form close-packed monolayers like the higher n-alkanes. 1-Decanol forms a close-packed monolayer phase already at low surface concentrations; the stability of this 2D-phase is attributed to chain association via hydrogen bonds. Carboxylic acids are adsorbed a scyclic dimers and form close-packed 2D arrays only at higher surface concentrations and lower temperatures; this is attributed to a decreased lateral interaction caused by the bulky (COOH)2 groups. The contribution of lateral solute-solute interaction to the molar enthalpy of displacement is estimated from the dependency of this quantity on the surface concentration of solute. For the carboxylic acids this contribution amounts to roughly one half of the molar enthalpy of freezing.

Keywords

Adsorbed Layer Dodecanoic Acid Tetradecanoic Acid Molar Enthalpy Decanoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Kipling, J. J., Adsorption from Solutions of Non-Electrolytes, Chap. 7, p. 118, Academic Press (London 1965).Google Scholar
  2. 2).
    Groszek, A. J., Proc. Roy. Soc. (London) A 314, 473 (1970).Google Scholar
  3. 3).
    Kern, H. E., A. Piechocki, U. Brauer, G. H. Findenegg, Progr. Colloid & Polymer Sci. 65, 118 (1978).CrossRefGoogle Scholar
  4. 4).
    Kern, H. E., G. H. Findenegg, J. Colloid Interface Sci. (eingereicht zur Veröffentlichung).Google Scholar
  5. 5).
    Everett, D. H., Progr. Colloid & Polymer Sci. 65, 103 (1978).CrossRefGoogle Scholar
  6. 6).
    Kipling, J. J., E. H. M. Wright, J. Chem. Soc. 1962, 855.Google Scholar
  7. 7).
    Kipling, J. J., E. H. M. Wright, J. Chem. Soc. 1963, 3382.Google Scholar
  8. 8).
    Liphard, M., G. H. Findenegg (in preparation).Google Scholar
  9. 9).
    Everett, D. H., R. T. Podoll, in: D. H. Everett (ed.), Colloid Science (Specialist Periodical Reports), Vol. 3, Chap. 2, Equ. (49) (London 1979).Google Scholar
  10. 10).
    Handbook of Chemistry and Physics, R. C. Weast (ed.), 52. Edition, Chemical Rubber Publishing Comp. (1971).Google Scholar
  11. 11).
    Findenegg, G. H., Monatshefte Chem. 101, 1081 (1970); Ibid. 104, 998 (1973).CrossRefGoogle Scholar
  12. 12).
    Kohler, F., P. Huyskens, Adv. Molec. Relaxation Processes 8, 125 (1976); see also F. Kohler, The Liquid State, Chap. 12, Verlag Chemie (Weinheim 1972).Google Scholar
  13. 13).
    Findenegg, G. H., J. Chem. Soc. Faraday Trans. I 68, 1799 (1972).CrossRefGoogle Scholar
  14. 14).
    Findenegg, G. H., J. Chem. Soc. Faraday Trans. I 69, 1069 (1973).CrossRefGoogle Scholar
  15. 15).
    Wightman, J. P., Paper presented at the EUCHEM Conference on Chemistry of Interfaces, Collioure (France) (April 1976).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1980

Authors and Affiliations

  • M. Liphard
    • 1
  • P. Glanz
    • 1
  • G. Pilarski
    • 1
  • G. H. Findenegg
    • 1
  1. 1.Physikalische Chemie IIRuhr-Universität BochumBochum 1

Personalised recommendations