Direct measurements of a particle-particle interactions

  • R. H. Ottewill
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 67)


Polymer latices, which can be prepared as concentrated dispersions with a narrow size distribution, provide suitable model systems for examining directly the forces of interaction between colloidal particles. Various experimental techniques can be utilized. The most direct of these involves the determination of the excess osmotic pressure as a function of the volume fraction of the dispersion. Using an optically transparent osmotic cell simultaneous optical diffraction measurements can be carried out to determine the structures formed by the colloidal particles. Consequently, order-disorder transitions in the dispersion can be observed and correlated with the osmotic pressure behaviour. If small particles are used, diameter ca. 50 nm, elastic light scattering measurements can be used to determine the structure factor and hence the radial distribution function, whilst inelastic light scattering measurements can provide information about the motion of the particles during interaction. Owing to multiple light scattering effects, these measurements are restricted to low volume fractions. However, the more concentrated systems can be investigated by means of small angle neutron scattering. Experimental results from the various experimental approaches will be described and compared with theoretical calculations carried out using the pair-wise interaction potential for interaction between two spherical latex particles.


Electrolyte Concentration Latex Particle High Volume Fraction Small Angle Neutron Scattering Polystyrene Latex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Derjaguin, B. V. and L. Landau, Acta Physiochim., U.R.S.S. 14, 633 (1941).Google Scholar
  2. 2).
    Verwey, E. J. W. and J. Th. G. Overbeek, Elsevier, Theory of Stability of Lyophobic Colloids, Elsevier (Amsterdam 1948).Google Scholar
  3. 3).
    Smoluchowski, M. von, Z.physik Chem. 92, 129 (1917).Google Scholar
  4. 4).
    Alfrey, T., E. B. Bradford, J. W. Vanderhoff, and G. Oster, J. Opt. Soc. Amer. 44, 603 (1954).Google Scholar
  5. 5).
    Luck, W., M. Klier, and H. Wesslau, Naturwissenschaften 50, 485 (1963).CrossRefGoogle Scholar
  6. 6).
    Hiltner, P. A. and I. M. Krieger, J. Physical Chem. 73, 2386 (1969).CrossRefGoogle Scholar
  7. 7).
    Takano, K. and S. Hachisu, Science of Light 25, 19 (1976).Google Scholar
  8. 8).
    Goodwin, J. W. and R. W. Smith, Disc. Faraday Soc. 57, 126 (1974).Google Scholar
  9. 9).
    Cornell, R. M., J. W. Goodwin, and R. H. Ottewill, J. Colloid and Interface Sci. 71, 254 (1979).CrossRefGoogle Scholar
  10. 10).
    Goodwin, J. W., J. Hearn, C. C. Ho, and R. H. Ottewill, Colloid and Polymer Sci. 252, 464 (1974).CrossRefGoogle Scholar
  11. 11).
    Goodwin, J. W., R. H. Ottewill, R. Pelton, G. Vianello, and D. E. Yates, Brit. Polymer J. 10, 173 (1978).CrossRefGoogle Scholar
  12. 12).
    Pusey, P. N., J. Phys. A: Math. Gen. 11, 119 (1978).CrossRefGoogle Scholar
  13. 13).
    Hachisu, S., Y. Kobayashi, and A. Kose, J. Colloid and Interface Sci. 42, 342 (1973).CrossRefGoogle Scholar
  14. 14).
    Lyons, S. M., B. Sc. thesis, University of Bristol (1978).Google Scholar
  15. 15).
    Kerker, M., The Scattering of Light and Other Electromagnetic Radiation, Academic Press (New York 1969).Google Scholar
  16. 16).
    Brown, J. C., P. N. Pusey, J. W. Goodwin, and R. H. Ottewill, J. Phys. A: Gen. Phys. 8, 664 (1975).CrossRefGoogle Scholar
  17. 17).
    Brown, J. C., J. W. Goodwin, R. H. Ottewill, and P. N. Pusey, Colloid and Interface Science, IV, 59 (1976).Google Scholar
  18. 18).
    Ottewill, R. H., J. Colloid and Interface Sci. 58, 357 (1977).CrossRefGoogle Scholar
  19. 19).
    Megen, W. van and I. Snook, Disc. Faraday Soc. 65, 92 (1978).CrossRefGoogle Scholar
  20. 20).
    Ottewill, R. H., Prog. Colloid and Polymer Sci. 59, 14 (1976).CrossRefGoogle Scholar
  21. 21).
    Goodwin, J. W., R. H. Ottewill, and A. Parentich, J. Phys. Chem. (1980).Google Scholar
  22. 22).
    Bacon, G. E., Neutron Scattering in Chemistry, Butterworths (London 1977).Google Scholar
  23. 23).
    Jacrot, B., Rep. Prog. Phys. 39, 911 (1976).CrossRefGoogle Scholar
  24. 24).
    Debye, P., J. Applied Phys. 15, 338 (1944).CrossRefGoogle Scholar
  25. 25).
    Riley, D. P. and G. Oster, Disc. Faraday Soc. 11, 107 (1951).CrossRefGoogle Scholar
  26. 26).
    Takano, K. and S. Hachisu, J. Chem. Phys. 67, 2604 (1977).CrossRefGoogle Scholar
  27. 27).
    Owens, S. M., M. Sc. thesis, University of Bristol (1979).Google Scholar
  28. 28).
    Barclay, L., A. Harrington, and R. H. Ottewill, Kolloid Z. u. Z. Polymere 250, 655 (1972).CrossRefGoogle Scholar
  29. 29).
    Goodwin, J. W., R. H. Ottewill, A. Parentich, and G. Wiese (to be published).Google Scholar
  30. 30).
    Homola, A. and A. A. Robertson, J. Colloid and Interface Sci. 54, 286 (1976).CrossRefGoogle Scholar
  31. 31).
    Vrij, A. and J. A. de Feijter, J. Colloid and Interface Sci. 70, 456 (1979).CrossRefGoogle Scholar
  32. 32).
    Williams, R., R. S. Crandall, and P. J. Wojtowicz, Phys. Rev. Letters 37, 348 (1976).CrossRefGoogle Scholar
  33. 33).
    Barker, J. A., Lattice Theories of the Liquid State, Pergamon Press (London 1963).Google Scholar
  34. 34).
    Barker, J. A. and D. Henderson, Phys. Rev. 4, 806 (1971).CrossRefGoogle Scholar
  35. 35).
    Barrett, K. E. J., Dispersion Polymerisation in Organic Media, Wiley (London 1975).Google Scholar
  36. 36).
    Antl, L., J. W. Goodwin, and R. H. Ottewill (to be published).Google Scholar
  37. 37).
    Cairns, R. J. R., R. H. Ottewill, D. W. J. Osmond, and I. Wagstaff, J. Colloid and Interface Sci. 54, 45 (1976).CrossRefGoogle Scholar
  38. 38).
    Ottewill, R. H. and T. Walker, Kolloid Z. u. Z. Polymere 227, 108 (1968).CrossRefGoogle Scholar
  39. 39).
    Flory, P. J. and W. R. Krigbaum, Chem. Phys. 18, 1086 (1950).CrossRefGoogle Scholar
  40. 40).
    Cebula, D. J., J. W. Goodwin, and R. H. Ottewill, (to be published).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1980

Authors and Affiliations

  • R. H. Ottewill
    • 1
  1. 1.School of ChemistryUniversity of Bristol Cantock’s CloseBristolEngland

Personalised recommendations