Advertisement

Structural changes in the transformation from α- to β-keratin

  • M. L. Huggins
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 67)

Abstract

Recently deduced structure patterns for α-keratin (the protein in hair) and β-keratin (produced by stretching α-keratin) are described. In the transformation the intramolecular hydrogen bonds and the crosslinks between the helical chains are broken. The molecular chain helices are extended until there is just one residue per helix turn. New laterally oriented interchain hydrogen bonds are formed. They are in planes making dihedral angles of about 120° with each other. These hydrogen bonds produce aggregates that can be “6-stacks”, shaped like hexagonal prisms, or perhaps (with half of the chains reversing their helix rotation sense) “pleated” or “wavy” sheets or composites of these or other types. In any case, disulfide and presumably other types of crosslinks are formed between appropriately located carbon atoms at the bends of the hydrogen bond aggregates.

Keywords

Hexagonal Prism Helical Chain Helix Axis Axial Shift Helix Turn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Huggins, M. L., Macromolecules 10, 893 (1977).CrossRefGoogle Scholar
  2. 2).
    Huggins, M. L., Proc. Int. Symp. Macromol., Dublin, 289 (1977).Google Scholar
  3. 3).
    Huggins, M. L., Ann. Rev. Biochem. 11, 27 (1942).CrossRefGoogle Scholar
  4. 4).
    Huggins, M. L., Chem. Rev. 32, 195 (1943).CrossRefGoogle Scholar
  5. 5).
    Pauling, L. and R. B. Corey, J. Am. Chem. Soc. 72, 5349 (1950).CrossRefGoogle Scholar
  6. 6).
    Huggins, M. L., J. Am. Chem. Soc. 74, 3963 (1952).Google Scholar
  7. 7).
    Astbury, W. T., and A. Street, Phil. Trans. Roy. Soc. (London) A230, 75 (1931).Google Scholar
  8. 8).
    Astbury, W. T., Fundamentals of Fibre Structure, Oxford Univ. Press (Oxford, 1933).Google Scholar
  9. 9).
    Huggins, M. L., J. Org. Chem. 1, 407 (1936).CrossRefGoogle Scholar
  10. 10).
    Fraser, R. D. B., T. P. MacRae, D. A. D. Parry, and E. Suzuki, Polymer 10, 810 (1969).CrossRefGoogle Scholar
  11. 11).
    Fraser, R. D. B., and T. P. MacRae, Conformation in Fibrous Proteins and Related Synthetic Polypeptides, Academic Press (New York and London, 1973).Google Scholar
  12. 12).
    Pauling, L., and R. B. Corey, Proc. Nat. Acad. Sci. USA 37, 251 (1951), 39, 253 (1953).CrossRefGoogle Scholar
  13. 13).
    Fraser, R. D. B., T. P. MacRae, and A. Miller, J. Mol. Biol. 10, 147 (1964).CrossRefGoogle Scholar
  14. 14).
    Huggins, M. L., Physical Chemistry of High Polymers, John Wiley and Sons (New York, 1958).Google Scholar
  15. 15).
    Huggins, M. L., J. Chem. Educ. 34, 480 (1957).CrossRefGoogle Scholar
  16. 16).
    Huggins, M. L., J. Polymer Sci. 30, 121 (1958).Google Scholar
  17. 17).
    Huggins, M. L., Angew. Chem. 83, 163 (1971).CrossRefGoogle Scholar
  18. 18).
    Huggins, M. L., Angew. Chem. Int. Ed. 10, 147 (1971).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1980

Authors and Affiliations

  • M. L. Huggins
    • 1
  1. 1.WoodsideUSA

Personalised recommendations