Advertisement

Infrared studies of adsorption at the solid/liquid interface

  • C. H. Rochester
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 67)

Abstract

Infrared spectroscopy provides an extremely important method for the study of surface-adsorbate interactions at the solid-liquid interface. The characterization of types of interaction and modes of adsorption can often be achieved in a way which is not possible by any other experimental method. Several modes of adsorption involving a single adsorbate can sometimes be distinguished and unambiguously characterized. Competitive adsorption from multi-component liquid mixtures can be monitored. Information can be gained about the orientation of adsorbed molecules, and changes of orientation with coverage recognized. The application of infrared spectroscopy to study of the solid/liquid interface appears to promise the rewards already experienced from infrared investigations of the solid/vapour interface. The addition of a liquid phase is a complicating experimental factor which may limit the spectral regions available for study. The use of cells with short optical path-lengths is essential. Work at Nottingham has entirely involved study of the adsorption of small molecules onto pressed discs of oxides immersed in liquids. The use of discs is unsuitable for systems containing polymeric adsorbate. Studies of polymer adsorption are better carried out by spectroscopic examination of ‘loose’ dispersions of solid adsorbents in liquid dispersion medium (17–22, 27–30).

Keywords

Carbon Tetrachloride Silanol Group Adsorbed Molecule Infrared Study Surface Silanol Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1).
    Yang, R. T., M. J. D. Low, G. L. Haller, and J. Fenn, Advanc. Colloid Interf. Sci. 44, 249 (1973).CrossRefGoogle Scholar
  2. 2).
    Filimonov, V. N. and A. N. Terenin, Doklady Akad. Nauk. U.S.S.R. 109, 982 (1956).Google Scholar
  3. 3).
    Filimonov, V. N., Optika i Spekt., 1, 490 (1956).Google Scholar
  4. 4).
    Low, M. J. D. and M. Hasegawa, J. Colloid Interf. Sci. 26, 95 (1968).CrossRefGoogle Scholar
  5. 5).
    Hasegawa, M. and M. J. D. Low, J. Colloid Interf. Sci. 29, 593 (1969).CrossRefGoogle Scholar
  6. 6).
    Rochester, C. H., Powder Technology 13, 157 (1976).CrossRefGoogle Scholar
  7. 7).
    Rochester, C. H., Advanc. Colloid Interf. Sci. 12, No. 1 (1980).Google Scholar
  8. 8).
    Rochester, C. H. and D.-A. Trebilco, J. Chem. Soc. (Faraday I) 73, 883 (1977).CrossRefGoogle Scholar
  9. 9).
    Griffiths. D. M., K. Marshall, and C. H. Rochester, J. Chem. Soc. (Faraday I) 70, 400 (1974).CrossRefGoogle Scholar
  10. 10).
    Buckland, A. D., C. H. Rochester, and S. A. Opham, J. Chem. Soc. (Faraday I) (in press).Google Scholar
  11. 11).
    Marshall, K. and C. H. Rochester, J. Chem. Soc. (Faraday I) 71, 2478 (1975).CrossRefGoogle Scholar
  12. 12).
    Buckland, A. D., C. H. Rochester, D.-A. Trebilco, and K. Wigfield,J. Chem. Soc. (Faraday I) 74, 2393 (1978).CrossRefGoogle Scholar
  13. 13).
    Rochester, C. H. and G. H. Yong, J. Chem. Soc. (Faraday I) (in press).Google Scholar
  14. 14).
    Cross, S. N. W. and C. H. Rochester, J. Chem. Soc. (Faraday I) 74, 2130 (1978).CrossRefGoogle Scholar
  15. 15).
    Marshall, K. and C. H. Rochester, Faraday Disc. Chem. Soc. 59, 117 (1975).CrossRefGoogle Scholar
  16. 16).
    Rochester, C. H. and D.-A. Trebilco, J. Chem. Soc. (Faraday I) 75, 2211 (1979).CrossRefGoogle Scholar
  17. 17).
    Fontana, B. J. and J. R. Thomas, J. Phys. Chem. 65, 480 (1961).CrossRefGoogle Scholar
  18. 18).
    Fontana, B. J., J. Phys. Chem. 67, 2360 (1963).CrossRefGoogle Scholar
  19. 19).
    Fontana, B. J., J. Phys. Chem. 70, 1801 (1966).CrossRefGoogle Scholar
  20. 20).
    Thies, C., P. Peyser, and R. Ullmann, Fourth Int. Congress of Surface Activity, Brussels 1041 (1964).Google Scholar
  21. 21).
    Thies, C., J. Phys. Chem. 70, 3783 (1966).CrossRefGoogle Scholar
  22. 22).
    Thies, C., Macromolecules, 1, 335 (1968).CrossRefGoogle Scholar
  23. 23).
    Low, M. J. D. and P. L. Lee, J. Colloid Interf. Sci. 45, 148 (1973).CrossRefGoogle Scholar
  24. 24).
    Hasegawa, M. and M. J. D. Low, J. Colloid Interf. Sci. 30, 378 (1969).CrossRefGoogle Scholar
  25. 25).
    Marshall, K. and C. H. Rochester, J. Chem. Soc. (Faraday I) 71, 1754 (1975).CrossRefGoogle Scholar
  26. 26).
    Marshall, K., C. H. Rochester, R. Smith, and T. N. Smith, Chem. and Ind. 409 (1976).Google Scholar
  27. 27).
    Killmann, E., H. J. Strasser and K. Winter, Sixth Int. Congress on Surface Active Agents, Zurich 221 (1972).Google Scholar
  28. 28).
    Killmann, E., Biopolymere und Biomechanik von Bindegewebssystem, Springer-Verlag, Berlin 249 (1974).Google Scholar
  29. 29).
    Killmann, E. and H. J. Strasser, Angew. Makromol. Chem. 31, 169 (1973).CrossRefGoogle Scholar
  30. 30).
    Killmann, E., Chemie Ing. Technik. 46, 767 (1974).CrossRefGoogle Scholar
  31. 31).
    Rochester, C. H. and D.-A. Trebilco, J. Chem. Soc. (Faraday I) 74, 1125 (1978).CrossRefGoogle Scholar
  32. 32).
    Rochester, C. H. and D.-A. Trebilco, J. Chem. Soc. (Faraday I) 74, 1137 (1978).CrossRefGoogle Scholar
  33. 33).
    Rochester, C. H. and D.-A. Trebilco, J. Chem. Soc. Chem. Comm. 621 (1977).Google Scholar
  34. 34).
    Rochester, C. H. and D.-A. Trebilco, Chem. and Ind. 127 (1978).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1980

Authors and Affiliations

  • C. H. Rochester
    • 1
  1. 1.Chemistry Department of theUniversityof NottinghamNottinghamEngland

Personalised recommendations