Advertisement

A new deformation mechanism in PE-monofilaments with high elastic recovery

  • R. K. Bayer
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 66)

Abstract

PE-monofilaments are produced by the melt-spinning process. The cooling velocity and the stretch-ratio of the melt were varied as characteristic parameters of the melt-spinning process. By increasing the cooling velocity and the cold drawing of the obtained threads, the elastic recovery after a 25% — elongation can be improved to complete reversibility. From tensile test runs a new deformation mechanism can be identified which explains this behaviour. The main features of this deformation mechanism are that no necking occurs during the deformation and that the deformation of the noncrystalline plays an important role. Apparently this mechanism is correlated with an imperfect crystalline structure.

Keywords

Deformation Mechanism Cooling Condition Elastic Recovery Stretch Ratio Cold Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Herrmann, A. J.: United States Patent Office 3, 256, 258, Patented June 14, (1966).Google Scholar
  2. 2).
    Joseph, C. W., P. H. William, M. J. Coplan, H. J. Freeman, J. S. Panto, U.S. Patent 257189-341725, Juli 1963.Google Scholar
  3. 3).
    Knobloch, F. W., W. O. Statton, United States, Patent Office 3, 299, 171, Patented Jan, 17, 1967.Google Scholar
  4. 4).
    Spruiell, J. E., J. L. White, Polymer Engineering and Sci. 15, No. 9, Sept. 1975.Google Scholar
  5. 5).
    Bayer, R. K., Sprenger, H., to be published.Google Scholar
  6. 6).
    Göritz, D., F. H. Müller, Colloid & Polymer Sci. 252, 862–870 (1974).CrossRefGoogle Scholar
  7. 7).
    Miles, M. J. Petermann, H. Gleiter, J. Macromol. Sci.-Phys. 8, 12, 523–534 (1976).Google Scholar
  8. 8).
    Clark, E. S., Amer. Chem. Soc. Div. Polymer Chem. 14, 88 (1973).Google Scholar
  9. 9).
    Park, I. K., H. D. Noether, Colloid & Polymer Sci. 253, 824–839 (1975).CrossRefGoogle Scholar
  10. 10).
    Cannon, S. L., G. B. McKenna, W. O. Statton, Polymer Sci. Macromolecular Rev. 11, 209–275 (1976).CrossRefGoogle Scholar
  11. 11).
    Vincent, P. I., Polymer 1, 425 (1960).CrossRefGoogle Scholar
  12. 12).
    Samuels, R. J., Sci. Phys. B 4, 701 (1970).Google Scholar
  13. 13).
    Trainor, A., Haward, R. N., Hay, J. N., Journal of Polymer Sci., Pol. Phys. Ed. Vol. 15, 1077 (1977).CrossRefGoogle Scholar
  14. 14).
    Iida, S., Sakami, H., J. Macromol. 2, 103, 1977 Kobunshi ROnbunshu, Eng. Ed.Google Scholar
  15. 15).
    Peterlin, A., colloid and Polymer Science, Vol. 253, No. 10, 809, 1975.CrossRefGoogle Scholar
  16. 16).
    Heise, B., Kilian H. G., Pietralla, M., Progress Colloid & Polymer Sci. 62, 16 (1977)Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1979

Authors and Affiliations

  • R. K. Bayer
    • 1
  1. 1.Organisationseinheit Maschinenbau Kassel-WilhelmshöheGesamthochschule KasselKassel

Personalised recommendations