Advertisement

Submicroscopic defects in strained polyoxymethylene

  • J. H. Wendorff
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 66)

Abstract

Submicroscopic defects, having an ellipsoidal shape, are created in polyoxymethylene as a function of the strain, due to local yielding processes. The size distribution of the defects can be represented by an exponential electron density autocorrelation function. The average size of the defects is independent of the strain whereas the concentration of the defects increases exponentially with increasing strain. Annealing studies show that the restoring tension of the defects is determined by the free energy of the defect surfaces, the retarding tension by the value of the macroscopic yield stress. The defects can relax, if the restoring tension gets larger than the retarding tension. Correlation between defects apparently play an important role in determining macroscopic properties of the material.

Keywords

Correlation Length Surface Free Energy Amorphous Region Defect Concentration Particle Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Jayatilaka, A., K. Trustrum, J. Mat. Sci. 12, 1426 (1977).CrossRefGoogle Scholar
  2. 2).
    Weibull, W., J. Appl. Mech. 18, 293 (1951).Google Scholar
  3. 3).
    Kambour, R. P., Nature 195, 1299 (1962).CrossRefGoogle Scholar
  4. 4).
    Olf, H.G., A. Peterlin, J. Pol. Sci. Phys. Ed. 12, 2209 (1974).CrossRefGoogle Scholar
  5. 5).
    Grabec, I., A. Peterlin, J. Pol. Sci. Phys. Ed. 14, 651 (1976).CrossRefGoogle Scholar
  6. 6).
    Peterlin, A., ACS Polymer Preprints 18 (2), 94 (1977).Google Scholar
  7. 7).
    Roeder, E., H. A. Croslack, Kunststoffe 67, 454 (1977).Google Scholar
  8. 8).
    Johnsen, U., D. Klinkenberg, Kolloid Z. u. Z. Polymere 251, 843 (1973).CrossRefGoogle Scholar
  9. 9).
    Retting, W., Europ. Pol. J. 6, 853 (1970).CrossRefGoogle Scholar
  10. 10).
    Zhurkov, S. N., V. S. Kuksenko, A. I. Slutsker, Fracture, Proc. of the 2nd. Intern. Conf. of Fracture p. 18 (1969).Google Scholar
  11. 11).
    Zhurkov, S. N., V. S. Kuksenko, Intern. J. of Fracture 11, 629 (1975).CrossRefGoogle Scholar
  12. 12).
    Kuksenko, V. S., V. S. Ryskin, V. I. Betekhtin, A. I. Slutsker, Intern. J. of Fracture 11, 829 (1975).CrossRefGoogle Scholar
  13. 13).
    Regel, V. R., A. M. Leksovskii, S. N. Sakiev, Internat. J. of Fracture 11, 841 (1975).CrossRefGoogle Scholar
  14. 14).
    Wendorff, J. H., to be published.Google Scholar
  15. 15).
    Fischer, E. W., Europhysics Conf. Abstracts 2E, 71 (1977).Google Scholar
  16. 16).
    Feltner, C. E., J. Appl. Phys. 38, 3576 (1967).CrossRefGoogle Scholar
  17. 17).
    Wendorff, J. H., Angew. Makromol. Chem., in press.Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1979

Authors and Affiliations

  • J. H. Wendorff
    • 1
  1. 1.Deutsches Kunststoff-InstitutDarmstadt

Personalised recommendations