Advertisement

The determination of size distribution of carbon blacks in aqueous dispersion by turbidity measurements

  • Tet Soei Ng
Neue Meßmethoden
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 65)

Abstract

From the spectral transmission measurements of some carbon black types the size distribution was estimated. For a logarithmic normal distribution a programme was written in the Fortran IV language to compute the theoretical turbidity spectra. As far as known, such computations have only been carried out for non-absorbing particles.

By superimposing the measured turbidity curves upon the computed set of curves the parameter σ g and a g of the logarithmic normal size distribution could be determined. It shows that the colour black HCCI has a narrow, SAF-, ISAF- and HAF-blacks medium, whereas FEF- and SRF-blacks have broad size distribution. The aggregate radii increase from 26 to 96 nm in the order HCCI-, SAF-, ISAF-, HAF-, FEF- and SRF-black.

As the turbidity spectra are characteristic for a black type, this method can be used for the identification of carbon blacks.

Keywords

Carbon Black Aqueous Dispersion Broad Size Distribution Tyre Scrap Logarithmic Normal Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Ng, T. S., Angew. Makrom. Chem. 44, 165–180 (1975).CrossRefGoogle Scholar
  2. 2).
    Dettmar, H.-K., W. Lode, E. Marre, Kolloid-Z. Z. Polymere 188, 28 (1963).CrossRefGoogle Scholar
  3. 3).
    Weber, H. H., Kolloid-Z. Z. Polymere 188, 40 (1963).CrossRefGoogle Scholar
  4. 4).
    Wallach, M. L., W. Heller, A. F. Stevenson, J. Chem. Phys. 34, 1796 (1961).CrossRefGoogle Scholar
  5. 5).
    Wallach, M. L., W. Heller, J. Chem. Phys. 68, 924 (1964).CrossRefGoogle Scholar
  6. 6).
    Walstra, P., J. Colloid Interface Sci. 27, 493 (1968).CrossRefGoogle Scholar
  7. 7).
    Dreyer, J., G. Hilbig, Plaste und Kautschuk 18, 507 (1971).Google Scholar
  8. 8).
    Medalia, A. I., E. M. Dannenberg, F. A. Heckman, G. R. Cotten, Rubber Chem. Technol. 46, 1239 (1973).Google Scholar
  9. 9).
    Voet, A., Rubber Age 82, 657 (1958).Google Scholar
  10. 10).
    Heckman, F. A., E. Redman, J. E. Connolly, Cabot Techn. Report, Complementary Studies of Carbon Black Aggregate Morphology by Analytical Centrifugation and Quantitative Image Analysis, Spring, 1977.Google Scholar
  11. 11).
    Stacy, C. J., P. H. Johnson, G. Kraus, Rubber Chem. Technol. 48, 538 (1975).Google Scholar
  12. 12).
    Heckman, F. A., Rubber Chem. Technol. 37, 1245 (1964).Google Scholar
  13. 13).
    Medalia, A. I., J. Colloid Interface Sci. 24, 393 (1967).CrossRefGoogle Scholar
  14. 14).
    Hess, W. M., G. C. McDonald, E. Urban, Rubber Chem. Technol. 46, 204 (1973).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1978

Authors and Affiliations

  • Tet Soei Ng
    • 1
  1. 1.DUNLOP AG FORSCHUNGHanau

Personalised recommendations