Advertisement

Thermodynamic stability of the ammonium ions of ethylenediamine and histamine in montmorillonite

  • André Maes
  • Peter Marynen
  • Adrien Cremers
Reaktionen An Grenzflächen
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 65)

Abstract

A thermodynamic formalism is presented for the determination of the stepwise protonation constants of polyammonium ions adsorbed on solid surfaces. The extrastabilities of the ammonium ions w.r.t. their stability in bulk solution are related to the ion exchange constants of the respective ammonium ions versus hydrogen.

Examples are given for ethyleneidiamine and histamine on montmorillonite. The monoammonium form of both amines are stabilized to the same extent. The excess stability constant relating to the second protonation of histamine exceeds the one for ethylenediamine by an order of magnitude. The contribution of the individual ionic groups to the overall exchange affinity is discussed.

Keywords

Bulk Solution Standard Free Energy Change Excess Stability Thermodynamic State Function Free Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Maes, A., P. Marynen, A. Cremers, Clays & Clay Min. 25, 309 (1977).CrossRefGoogle Scholar
  2. 2).
    Maes, A., P. Marynen, A. Cremers, J. Chem. Soc. Faraday I., 73, 1297 (1977).CrossRefGoogle Scholar
  3. 3).
    Maes, A., P. Peigneur, A. Cremers, J. Chem. Soc. Faraday I., 74, 182 (1978).CrossRefGoogle Scholar
  4. 4).
    Pleysier, J., A. Cremers, J. Chem. Soc. Faraday I., 71, 256 (1975).CrossRefGoogle Scholar
  5. 5).
    Maes, A., P. Peigneur, A. Cremers, Proc. Int. Clay Conf. Appl. Pub. Ltd., 319 (1975).Google Scholar
  6. 6).
    Sillén, G. L., A. E. Martell, “Stability Constants of Metal Ion Complexes”, The Chemical Society, London (1964).Google Scholar
  7. 7).
    Gaines, G. L., H. C. Thomas, J. Chem. Phys. 21, 714 (1953).CrossRefGoogle Scholar
  8. 8).
    Maes, A., A. Cremers, J. Chem. Soc. Faraday, I. 73, 1807 (1977).CrossRefGoogle Scholar
  9. 9).
    Foscolos, A. E., I. Barshad, Soil Sci. Soc. Amer. Proc. 33, 242 (1969).CrossRefGoogle Scholar
  10. 10).
    Gilbert, M., J. Laudelout, Soil Sci. 100, 157 (1965).CrossRefGoogle Scholar
  11. 11).
    Vansant, B. F., J. B. Yutterboeven, Clays & Clay Min. 20, 47 (1972).CrossRefGoogle Scholar
  12. 12).
    Theng, B. K., D. J. Greenland, J. P. Quirk, Clay Min. 7, 1 (1967).CrossRefGoogle Scholar
  13. 13).
    Cloos, P., R. D. Laura, Clays & Clay Min. 20, 259 (1972).CrossRefGoogle Scholar
  14. 14).
    Rasquin, E., To be submitted for publication (1977).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1978

Authors and Affiliations

  • André Maes
    • 1
  • Peter Marynen
    • 1
  • Adrien Cremers
    • 1
  1. 1.Centrum voor Oppervlaktescheikunde en Colloïdale ScheikundeKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations