Advertisement

Interfacial tension at plasma membranes of normal and virustransformed fibroblast cell cultures

  • G. Adam
  • Ch. Schumann
Stark Strukturierte Systeme
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 65)

Abstract

Interfacial tensions of the outer plasma membrane of normal and transformed in vitro cultures of mouse fibroblasts have been characterized by using the method of contact angles.

Contact angles of 3T3 cells are independent of cell density on the culture plate, whereas those of SV40-3T3 and PY-3T3 cells decrease with cell density. Treatment of 3T3 cells with calf serum as a stimulant of cell proliferation leads to a decrease of contact angle at all cell densities, whereas serum treatment of PY-3T3 cells does not lead to a decrease of contact angle at higher cell density. Treatment of 3T3 or SV40-3T3 cells with concananvalin A as an inhibitor of cell proliferation leads to an increase of the contact angles. When interfacial tensions are derived from contact angle data by using the thermodynamic theory of Neumann and coworkers, figures in the range of 0.1–3 mNm−1 are obtained.

These and earlier results are consistent with the hypothesis of a lateral phase separation in the plasma membrane of the cells, triggered by serum treatment and mediated by a variation of Ca++-binding to negatively charged ligands in the membrane.

Keywords

Contact Angle Cell Density Interfacial Tension Serum Treatment Newborn Calf Serum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1).
    Nicolson, G. L., Nature 243, 218 (1973).Google Scholar
  2. 2).
    Burger, M. M., Current Topics in Cellular Regulation 3, 135 (1971).Google Scholar
  3. 3).
    Adam, G., G. Adam, Exp. Cell Res. 93, 71 (1975).CrossRefGoogle Scholar
  4. 4).
    Adam, G., U. Walz, Biophysics Struct. Mechanism 1, 329 (1975).CrossRefGoogle Scholar
  5. 5).
    Adam, G., H. Alpes, K. Blaser, B. Neubert, Z. Naturforsch. 30c, 638 (1975).Google Scholar
  6. 6).
    Fuchs, P., A. Parola, P. W. Robbins, E. R. Blout, Proc. Natl. Acad. Sci. USA 72, 3351 (1975).CrossRefGoogle Scholar
  7. 7).
    Inbar, M., I. Yuli, A. Raz, Exp. Cell Res. 105, 325 (1977).CrossRefGoogle Scholar
  8. 8).
    Jones, M. N., Biological Interfaces, p. 27 (Amsterdam 1975).Google Scholar
  9. 9).
    Neumann, A. W., Advances in Colloid and Interface Science 4, 105 (1974).CrossRefGoogle Scholar
  10. 10).
    Van Oss, C. J., C. F. Gillman, A. W. Neumann, Phagocytotic Engulfment and Cell Adhesiveness as cellular Surface Phenomena (New York 1975).Google Scholar
  11. 11).
    Bombik, B. M., M. M. Burger, Exp. Cell Res. 80, 88 (1973).CrossRefGoogle Scholar
  12. 12).
    Seifert, W. E., P. S. Rudland, Nature 248, 138 (1974).CrossRefGoogle Scholar
  13. 13).
    Hülser, D. F., W. Frank, Z. Naturforsch. 26b, 1045 (1971).Google Scholar
  14. 14).
    McClain, D. A., P. D'Eustachio, G. M. Edelman, Proc. Natl. Acad. Sci. USA 74, 666 (1977).CrossRefGoogle Scholar
  15. 15).
    Burger, M. M., K. D. Noonan, Nature 228, 512 (1970)CrossRefGoogle Scholar
  16. 16).
    Adam, G., in: Synergetics — Cooperative Processis in Multicomponent Systems, H. Haken, Ed. p. 220 (Stuttgart 1973).Google Scholar
  17. 17).
    Dulbecco, R., J. Elkington, Proc. Natl. Acad. Sci. USA 72, 1584 (1975).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1978

Authors and Affiliations

  • G. Adam
    • 1
  • Ch. Schumann
    • 1
  1. 1.Fachbereich Biologie der Universität KonstanzKonstanz

Personalised recommendations