Adsorption from solution of chain molecules onto graphite: Evidence for lateral interactions in ordered monolayers

  • H. E. Kern
  • A. Piechocki
  • U. Brauer
  • G. H. Findenegg
Nichtwässerige Systeme
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 65)


Isotherms of the specific surface excess and of the enthalpy of displacement (enthalpy of adsorption from solution) are reported for dilute solutions of n-docosane (n-C22H46) in heptane onto graphitized carbon black, for tempertures from 15 to 45 °C.

As already noted by previous authors long-chain n-alkanes are strongly preferentially adsorbed onto the graphite basal plane. The present work shows that the isotherms for such a system exhibit a positive initial curvature and a point of inflection before approaching a plateau corresponding to a complete adsorbed monolayer. This deviation from ideal Langmuir-type behaviour is attributed to strong lateral interactions between long-chain molecules adsorbed side-by-side on the flat graphite basal plane. There are indications for a phase separation in the adsorbed layer at the lower temperatures, involving the formation of close-packed ordered arrays of n-docosane molecules on the surface. — The experimental results can be accounted for quantitatively by the parallel layer model of adsorption from non-athermal solutions of chain molecules.


Carbon Black Adsorbed Layer Molar Enthalpy Chain Molecule Standard Molar Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Everett, D. H., in: D. H. Everett (Ed.), Colloid Science (Special. Period. Report), Vol. 1, Chap. 2 (London 1973).Google Scholar
  2. 2).
    Prigogine, I., I. Maréchal, J. Colloid Sci. 7, 122 (1952).CrossRefGoogle Scholar
  3. 3).
    Delmas, G., D. Patterson, J. Phys. Chem. 64, 1827 (1960).CrossRefGoogle Scholar
  4. 4).
    Everett, D. H., Trans. Faraday Soc. 61, 2478 (1965); S. G. Ash, D. H. Everett, G. H. Findenegg, ibid. 64, 2639 (1968).CrossRefGoogle Scholar
  5. 5).
    Groszek, A. J., Proc. Roy. Soc. (London) A 314, 473 (1970).Google Scholar
  6. 6).
    Groszek, A. J., J.C.S. Faraday Discuss. 59, 109 (1975).CrossRefGoogle Scholar
  7. 7).
    Allen, T., R. M. Patel, J. Colloid Interface Sci. 35, 647 (1971).CrossRefGoogle Scholar
  8. 8).
    Kern, H. E., Doktorarbeit, Bochum 1978.Google Scholar
  9. 9).
    Findenegg, G. H., J. Colloid Interface Sci. 35, 249 (1971).CrossRefGoogle Scholar
  10. 10).
    Kern, H. E., W. von Rybinski, G. H. Findenegg, J. Colloid Interface Sci. 59, 301 (1977).CrossRefGoogle Scholar
  11. 11).
    Young, C. L., Trans. Faraday Soc. 64, 1537 (1968).CrossRefGoogle Scholar
  12. 12).
    Schaerer, A. A., C. J. Busso, E. A. Smith, L. B. Skinner, J. Amer. Chem. Soc. 77, 2017 (1955).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1978

Authors and Affiliations

  • H. E. Kern
    • 1
  • A. Piechocki
    • 1
  • U. Brauer
    • 1
  • G. H. Findenegg
    • 1
  1. 1.Lehrstuhl für Physikalische Chemie IIRuhr-Universität BochumBochum 1

Personalised recommendations