On the invariance of the charge of electrical double layers under dilution of the equilibrium electrolyte solution

  • D. Stigter
Wasser Und Elektrolytlösungen
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 65)


Electrical double layers are discussed in which the interfacial charge arises from the adsorption equilibrium between the interface and an electrolyte solution. A Gouy ionic atmosphere extends from the interfacial region into the solution. It is shown that for high potentials the interfacial charge is invariant under dilution of the electrolyte solution, provided that all counter ions have the same valency. This invariance rule applies to site binding of counter ions, and is demonstrated for a partially ionized fatty acid monolayer on the basis of a Gouy-Langmuir model. Similarly, for high potentials the adsorption of counter ions in an interfacial solution region (Stern layer) is invariant under dilution. The effects of geometry (plane, cylinder, sphere) are investigated, and applications to detergent micelles and to DNA are briefly discussed.


Double Layer Electrical Double Layer Silver Iodide Stern Layer Double Layer Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Sparnaay, M. J., The Electrical Double Layer (Pergamon, New York, 1972).Google Scholar
  2. 2).
    Payens, Th. A. J., IOnized Monolyaers (Thesis, Utrecht, 1955); Philips Research Repts. 10, 425 (1955); Koninkl. Ned. Akad. Wetensch., Proc., 57 B, 529 (1954).Google Scholar
  3. 3).
    Loeb, A. L., P. H. Wiersma and J. Th. G. Overbeek, The Electrical Double Layer around a Spherical Colloid Particle, (M. I. T. Press, Cambridge, 1961).Google Scholar
  4. 4).
    Stigter, D. J., Colloid Interface Sci., 53, 296 (1975).CrossRefGoogle Scholar
  5. 5).
    Fuoss, R. M., A. Katchalsky and S. Lifson, Proc. Natl. Acad. Sci., 37, 579 (1951).CrossRefGoogle Scholar
  6. 6).
    Schellman, J. A. and D. Stigter, Biopolymers, 16, 1415 (1977).CrossRefGoogle Scholar
  7. 7).
    Stigter, D. J., Phys. Chem., 79, 1008 (1975); 68, 3603 (1964).CrossRefGoogle Scholar
  8. 8).
    Romsted, L., Rate Enhancements in Micellar Systems (Thesis, Indiana University, Bloomington, 1975).Google Scholar
  9. 9).
    Romsted, L., private communication (1976).Google Scholar
  10. 10).
    Mazer, N. A., G. B. Benedek and M. C. Carey, J. Phys. Chem., 80, 1075 (1976).CrossRefGoogle Scholar
  11. 11).
    Stigter, D. J., Colloid Interf. Sci., 23, 379 (1967).CrossRefGoogle Scholar
  12. 12).
    Rice, S. A. and F. A. Harris, J. Phys. Chem., 58, 733 (1954).CrossRefGoogle Scholar
  13. 13).
    Jensen, E. J., W. D. Kristensen and R. M. J. Cotterill, J. C. S. Faraday II, 6, 737 (1977).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1978

Authors and Affiliations

  • D. Stigter
    • 1
  1. 1.Agricultural Research Service, U.S. Department of AgricultureWestern Regional Research CenterAlbany

Personalised recommendations