Advertisement

Applications of polymer solution theory to monolayers

  • G. Gabrielli
  • E. Ferroni
  • M. L. Huggins
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 58)

Abstract

A recently derived theoretical equation of state for linear polymers in monolayers is applied to experimental measurements of the dependence of surface area on surface pressure for monolayers of poly(methyl methacrylate) and polypropylene grafted with methyl acrylate, at water/air, water/n-hexane, water/toluene, and water/(petroleum ether) interfaces at 20°, 25° and 30°C. The experimental and theoretical curves are in satisfactory agreement for pressures up to those corresponding to the limiting area for stability of the monolayers. The theoretical parameters derived from the experimental data measure the molecular and intermolecular properties that determine the Gibbs free energies of the monolayers.

Keywords

Petroleum Ether Surface Pressure Methyl Acrylate Theoretical Equation Average Molar Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Gabrielli, G., M. Puggelli and E. Ferroni, J. Colloid Interface Sci. 32, 242 (1970).CrossRefGoogle Scholar
  2. 2).
    Gabrielli, G., M. Puggelli and E. Ferroni, J. Colloid Interface Sci. 33, 133 (1970).CrossRefGoogle Scholar
  3. 3).
    Gabrielli, G. and M. Puggelli, J. Colloid Interface Sci. 35, 460 (1971).CrossRefGoogle Scholar
  4. 4).
    Singer, S. I., J. Chem. Physics 16, 872 (1948).CrossRefGoogle Scholar
  5. 5).
    Saraga, L. T. and I. Prigogine, Mem. Ser. Chim. Etat (Paris) 38, 109 (1953).Google Scholar
  6. 6).
    Davies, J. T. and J. Llopis, Proc. Roy. Soc. A227, 537 (London, 1955).Google Scholar
  7. 7).
    Frisch, H. L. and R. Simha, J. Chem. Physics 27, 702 (1957).CrossRefGoogle Scholar
  8. 8).
    Kawai, T., J. Polymer Sci. 35, 401 (1959).CrossRefGoogle Scholar
  9. 9).
    Motomura, K. and R. Matuura, J. Colloid Sci. 18, 12 (1963).Google Scholar
  10. 10).
    Huggins, M. L., J. Phys. Chem. 74, 371 (1970).CrossRefGoogle Scholar
  11. 11).
    Huggins, M. L., Polymer 12, 357 (1971); 13, 554 (1972).CrossRefGoogle Scholar
  12. 12).
    Huggins, M. L., J. Phys. Chem. 75, 1255 (1971).CrossRefGoogle Scholar
  13. 13).
    Huggins, M. L., Kolloid-Z. u. Z. Polymere 25, 29 (1973).Google Scholar
  14. 14).
    Huggins, M. L., Makromol. Chem. 87, 119 (1965).CrossRefGoogle Scholar
  15. 15).
    Gabrielli, G., M. Puggelli and R. Faccioli, J. Colloid Interface Sci. 37, 213 (1971).CrossRefGoogle Scholar
  16. 16).
    Gabrielli, G., M. Puggelli and R. Faccioli, J. Colloid Interface Sci. 41, 63 (1972).CrossRefGoogle Scholar
  17. 17).
    Gabrielli, G., M. Puggelli and E. Ferroni, Berichte vom VI. Internationalen Kongreß für grenzflächenaktive Stoffe, Band BII 329 (1973).Google Scholar
  18. 18).
    Gabrielli, G., M. Puggelli and E. Ferroni, J. Colloid Interface Sci. 47, 145 (1974).CrossRefGoogle Scholar
  19. 19).
    Natta, G., F. Severini, M. Pegoraro and C. Tavazzini, Makromol. Chem. 119, 201 (1968).CrossRefGoogle Scholar
  20. 20).
    Gabrielli, G. and M. Puggelli, J. Colloid Interface Sci. 45, 217 (1973).CrossRefGoogle Scholar
  21. 21).
    Crisp, D. J., J. Colloid Sci. 1, 49, 161 (1946).CrossRefGoogle Scholar
  22. 22).
    Isemura, T. and K. Hamaguchi, Bull. Chem. Soc. Japan 25, 49 (1952).CrossRefGoogle Scholar
  23. 23).
    Davies, J. T. and K. Rideal, Interfacial Phenomena, p. 246 (New York, 1963).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1975

Authors and Affiliations

  • G. Gabrielli
    • 1
  • E. Ferroni
    • 1
  • M. L. Huggins
    • 2
  1. 1.Istituto di Chimica FisicaUniversità di FirenzeItalia
  2. 2.Arcadia Institute for Scientific ResearchWoodsideU.S.A.

Personalised recommendations