Advertisement

X-Ray scattering by wool and polyacrylonitrile graft copolymers

  • R. B. Beevers
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 58)

Abstract

X-ray scattering by wool + polyacrylonitrile graft copolymers prepared by the ferrous ion-hydrogen peroxide initiatory system is reported. Scattering which may be attributed to the polyacrylonitrile (PAN) grafts is not observed until the level of grafting has reached about 20% PAN. At high levels (125% PAN) the oriented molecular structure of the wool fibre has an effect on the formation of the graft copolymer and the component of the X-ray scattering arising from the polymer grafts shows a measure of orientation. It is also observed that at graft polymer levels above 23% PAN the grafted wool fibre becomes resistant to enzymatic hydrolysis. This provides evidence that the site of initiation of graft copolymerization using acrylonitrile as the vinyl monomer is on a cystine residue, as has been reported in respect of graft copolymerizationj of styrene and methyl methacrylate in wool.

Keywords

Graft Copolymer Disulphide Bond Wool Fibre Vinyl Monomer Wool Textile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referencees

  1. 1).
    Ingram, P., J. L. Williams, V. Stannett and M. W. Andrews, J. Polymer Sci. A-1, 6, 1895 (1968).CrossRefGoogle Scholar
  2. 2).
    Palmer, K., Proc. Intern. Wool Textile Res. Conf. Australia 3, 374 (1955).Google Scholar
  3. 3).
    Simpson, W. S., Congr. Intern. Recherche Textile (Paris) 3, 359 (1965).Google Scholar
  4. 4).
    Watt, I, C., J. Macromol. Sci. Chem. A 4, 1079 (1970).Google Scholar
  5. 5).
    Beevers, R. B., Kolloid-Z. u. Z. Polymer 252, 367 (1974).CrossRefGoogle Scholar
  6. 6).
    Andrews, M. W., R. L. D'Arcy and I. C. Watt, J. Polymer Sci. B, 3, 441 (1965).CrossRefGoogle Scholar
  7. 7).
    Andrews, M. W., J. Roy. Microscop. Soc. 84, 439 (1965).Google Scholar
  8. 8).
    D'Arcy, R. L., W. B. Hall and I. C. Watt, J. Textile Inst. 57, T137 (1966).Google Scholar
  9. 9).
    Skertchly, A. and H. J. Woods, J. Textile Inst. 51, T518 (1960).Google Scholar
  10. 10).
    Beevers, R. B., Macromol. Rev. 3, 113 (1968).CrossRefGoogle Scholar
  11. 11).
    Hinrichsen, G. and H. Orth, J. Polymer Sci. B, 9, 529 (1971).CrossRefGoogle Scholar
  12. 12).
    Hinrichsen, G. and H. Orth, Kolloid-Z. u. Z. Polymer 247, 844 (1971).CrossRefGoogle Scholar
  13. 13).
    Fraser, R. D. B., T. P. MacRae, G. R. Millward, D. A. D. Parry, E. Suzuki and P. A. Tulloch, Appl. Polymer Symp. 18, 113 (1971).Google Scholar
  14. 14).
    Bendit, E. G. and M. Feughelman, Encyl. Polymer Sci. Technol. 8, 1 (1968).Google Scholar
  15. 15).
    Bendit, E. G., Textile Res. J. 30, 547 (1960).CrossRefGoogle Scholar
  16. 16).
    Beevers, R. B., E. F. T. White and L. Brown, Trans. Faraday Soc. 56, 1535 (1960).CrossRefGoogle Scholar
  17. 17).
    Arai, K. and M. Negishi, J. Polymer Sci. A1, 9, 1865 (1971).CrossRefGoogle Scholar
  18. 18).
    Campbell, D., J. L. Williams and V. Stannett, Advanc. Chem. Ser. 6, 221 (1967).CrossRefGoogle Scholar
  19. 19).
    Arai, K., M. Negishi, S. Komine and H. Takeda, Appl. Polymer Symp. 18, 545 (1971).Google Scholar
  20. 20).
    Brocklehurst, K. and M. P. J. Kierstan, Nature 242, 167 (1973).Google Scholar
  21. 21).
    Milligan, B., L. A. Holt and J. B. Caldwell, Appl. Polymer Symp. 18, 113 (1971).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1975

Authors and Affiliations

  • R. B. Beevers
    • 1
  1. 1.Division of Textile Physics CSIRORydeAustralia

Personalised recommendations