A force field description for entanglements in polymer systems

  • J. Mewis
  • G. Schoukens
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 58)


An extension of rheological bead-spring models that would encompass concentrated solutions and melts of high molecular weight polymers is investigated. As in some previous attempts the forces due to the interaction with surrounding molecules are represented by a force field. In a simple manner this force field takes into account the partial interpenetration of neighbouring molecules. A normal mode analysis renders a discrete relaxation spectrum for the model.

In further treatment the model parameters are considered as a set of adjustable variables. It is verified that the resulting form of the model describes the relevant features of the polymer systems under consideration.

The discussion is limited to monodisperse materials. The results are compared with experimental data taken from the literature as well as with other theories. The comparison covers the linear dynamic moduli, steady state shear flow and non-linear behaviour.

Of the molecular characteristics only molecular weight is considered. Its effect on the model parameters is investigated, particularly to find out whether the known deviations from the Rouse model could be described.


Force Field Viscous Drag Normal Mode Analysis High Molecular Weight Polymer Rouse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Rouse, P. E., J. Chem. Physics 21, 1272 (1953).CrossRefGoogle Scholar
  2. 2).
    Zimm, B. H., J. Chem. Physics 24, 269 (1956).CrossRefGoogle Scholar
  3. 3).
    Ziabicki, A. and R. Takserman-Krozer, J. Polymer Sci. A 2, 7, 2005 (1969).Google Scholar
  4. 4).
    Thirion, P., VIth Intern. Congr. Rheol. (Lyon, 1972).Google Scholar
  5. 5).
    Bueche, F., Physical Properties of Polymers (1962).Google Scholar
  6. 6).
    Ferry, J. D., R. F. Landel and M. J. Williams, J. Appl. Phys. 26, 359 (1955).CrossRefGoogle Scholar
  7. 7).
    Ferry, J. D., Viscoelastic Properties of Polymers (1970).Google Scholar
  8. 8).
    Graessley, W. W., J. Chem. Physics 43, 2696 (1965).CrossRefGoogle Scholar
  9. 9).
    Chompff, A. J. and W. J. Prins, J. Chem. Physics 48, 235 (1968).CrossRefGoogle Scholar
  10. 10).
    Vinogradov, G. V., V. H. Pokrovsky and Yu. G. Yanovsky, Rheol. Acta 11, 258 (1972).CrossRefGoogle Scholar
  11. 11).
    Graessley, W. W., J. Chem. Physics 54, 5143 (1971).CrossRefGoogle Scholar
  12. 12).
    Grand, H. S., Ph. D. Thesis, Univ. of Pennsylvania (1969).Google Scholar
  13. 13).
    Chen, I. J. and Bogue, D. C., Trans. Soc. Rheol. 16, 59 (1972).CrossRefGoogle Scholar
  14. 14).
    Tanner, R. I., A. I. Ch. E. Journ. 15, 177 (1969).Google Scholar
  15. 15).
    Chompff, A. J. and J. A. Duiser, J. Chem. Physics 45, 1505 (1966).CrossRefGoogle Scholar
  16. 16).
    Tager, A. A. and V. E. Dreval, Russ. Chem. Rev. 36, 361 (1967).CrossRefGoogle Scholar
  17. 17).
    Marrucci, G., G. Titimanlio and G. S. Sarti, Rheol. Acta 12, 269 (1973).CrossRefGoogle Scholar
  18. 18).
    Lodge, A. S. and Y. J. Wu, Rheol. Acta 10, 539 (1971).Google Scholar
  19. 19).
    Tschoegl, N. W., J. Phys. Chem. 40, 473 (1964).CrossRefGoogle Scholar
  20. 20).
    Vinogradov, G. V., Yu. G. Yanovsky, A. I. Isayev, V. P. Shatalov and V. G. Shalganova, Intern. J. Pol. Mat. 1, 17 (1971).CrossRefGoogle Scholar
  21. 21).
    West, G. H., Polymer 10, 751 (1969).CrossRefGoogle Scholar
  22. 22).
    Tobolsky, A. V., R. Schaffhauser and R. Böhme, Polymer Letters 2, 103 (1964).CrossRefGoogle Scholar
  23. 23).
    Mieras, H. J. M. A. and C. F. H. van Rijn, Nature 218, 865 (1968).CrossRefGoogle Scholar
  24. 24).
    Graessley, W. W. and J. S. Prentice, J. Polymer Sci. A 2, 6, 1887 (1968).Google Scholar
  25. 25).
    Wolkowicz, R. I. and W. C. Forsman, Macromol. 4, 184 (1971).CrossRefGoogle Scholar
  26. 26).
    Bogue, D. C., Ind. Eng. Chem. Fundam. 5, 253 (1936).CrossRefGoogle Scholar
  27. 27).
    Yamamoto, M., Trans. Soc. Rheol. 15, 783 (1971).CrossRefGoogle Scholar
  28. 28).
    Leonov, A. I., in: Progress in Heat & Mass Transfer, Vol. 5 (Oxford, 1972).Google Scholar
  29. 29).
    Sakai, M., T. Fujimoto and M. Nagasawa, Macromol. 6, 786 (1972).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1975

Authors and Affiliations

  • J. Mewis
    • 1
  • G. Schoukens
    • 1
  1. 1.Instituut voor Chemie-ingenieurstechniekKatholieke Universiteit Te LeuvenHeverleeBelgium

Personalised recommendations