Comments on the morphology of polymers crystallized from oriented melts

  • T. Amano
  • S. Kajita
  • K. Katayama
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 58)


Molecular orientation due to melt flow has a profound effect on the nature of subsequent crystallization from the melt. This resulting crystalline morphology was examined with a polarizing microscope to understand the cases intermediate between quiescent melts on the one hand and highly oriented melts on the other. It seems unlikely that fibrillar nucleation along extended molecules occurs in general. Rather a more satisfactory picture is one in which the dominant orientation-dependent factor is a restriction of the lamellar growth to certain directions. This mechanism is emphasized as opposed to the concept of a direction-dependent growth rate or the earlier concept of fibrillar nucleation. A picture developed along these lines allows one to explain the entire spectrum of structure, ranging from spherulites on the one hand to “stacked lamellar” structure on the other.


Molecular Orientation Stretch Ratio Crystalline Morphology Vibration Direction Primary Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Pennings, A. and A. M. Kiel, Kolloid-Z. u. Z. Polymere 205, 160 (1965).CrossRefGoogle Scholar
  2. 2).
    Kobayashi, K. and T. Nagasawa, J. Macromol. Sci.-Phys. B 4, 331 (1970).CrossRefGoogle Scholar
  3. 3).
    Ziabicki, A., Colloid & Polymer Sci. 252, 207, 433 (1974).CrossRefGoogle Scholar
  4. 4).
    Tucker, P. and W. George, Polym. Eng. Sci. 12, 364 (1972).CrossRefGoogle Scholar
  5. 5).
    Katayama, K., T. Amano and K. Nakamura, Kolloid-Z. u. Z. Polymere 226, 125 (1968).CrossRefGoogle Scholar
  6. 6).
    Keller, A. and M. J. Machin, J. Macromol. Sci.-Phys. B 1, 41 (1967).CrossRefGoogle Scholar
  7. 7).
    Hill, M. J. and A. Keller, J. Macromol. Sci.-Phys. B 5, 591 (1971).CrossRefGoogle Scholar
  8. 8).
    Yeh, G. S. Y., J. Macromol. Sci.-Phys. B 6, 465 (1972).CrossRefGoogle Scholar
  9. 9).
    Katayama, K., T. Amano and T. Nakamura, Appl. Polym. Symp., No. 20, 237 (1973).Google Scholar
  10. 10).
    Kobayashi, K. in P. H. Geil, Polymer Single Crystals (New York, 1963).Google Scholar
  11. 11).
    Baranov, V. G., T. I. Volkov, G. S. Farshyan and S. Ya. Frenkel, J. Polym. Sci., C No. 30, 305 (1970).Google Scholar
  12. 12).
    Yeh, G. S. Y. and L. Lambert, J. Appl. Phys. 42, 4614 (1971).CrossRefGoogle Scholar
  13. 13).
    Keller, A., J. Polym. Sci. 15, 31 (1955).CrossRefGoogle Scholar
  14. 14).
    for example, Andrews, E. H., Proc. Roy. Soc. A 277, 562 (1964).Google Scholar
  15. 14a).
    Haas, T. W. and B. Maxwell, Polym. Eng. Sci. 9, 225 (1965).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1975

Authors and Affiliations

  • T. Amano
    • 1
    • 2
  • S. Kajita
    • 1
    • 2
  • K. Katayama
    • 1
    • 2
  1. 1.Textile Research LaboratoryAsahi Chemical Industry Co., Ltd.TakatsukiJapan
  2. 2.Technical Research LaboratoryAsahi Chemical Industry Co., Ltd.FujiJapan

Personalised recommendations