An analysis of thermally activated macro-deformation in polymers

Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 58)


The model for macro-deformation is based on an Arrhenius-type equation. Using a thermodynamic approach, an analysis is described which characterizes the deformation behaviour by activation enthalpies, stress-and pressure-activation volumes and frequency factors, and their relation to stress, pressure and strain. The application of the method in recent experiments on EP, PE, PMMA, etc. is reviewed, and the consistency of theoretical and experimental results is demonstrated.


Pressure Dependence Frequency Factor Activation Enthalpy Stress Dependence External Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Conrad, H., J. Metals 16, 582 (1964).Google Scholar
  2. 2).
    Kronmüller, H., Moderne Probleme der Metallphysik, Band I, p. 126, (Berlin, 1965).Google Scholar
  3. 3).
    Evans, A. G. and R. D. Rawlings, Phys. stat. sol. 34, 9 (1969).CrossRefGoogle Scholar
  4. 4).
    Ward, I. M., Mechanical Properties of Solid Polymers (London, 1971).Google Scholar
  5. 5).
    Shen, K. H. and J. L. Rutherford, Mater. Sci. Eng. 9, 323 (1972).CrossRefGoogle Scholar
  6. 6).
    Pink, E. and J. D. Campbell, Report No. 1040/72, Dept. Engineering Science (Oxford, 1972).Google Scholar
  7. 7).
    Pink, E. and J. D. Campbell, Mater. Sci. Eng. 15, 187 (1974).CrossRefGoogle Scholar
  8. 8).
    Pampillo, C. A. and L. A. Davis, J. Appl. Phys. 43, 4277 (1972).CrossRefGoogle Scholar
  9. 9).
    Davis, L. A. and C. A. Pampillo, J. Appl. Phys. 42, 4659 (1971).CrossRefGoogle Scholar
  10. 10).
    Davis, L. A. and C. A. Pampillo, J. Appl. Phys. 43, 4285 (1972).CrossRefGoogle Scholar
  11. 11).
    Holt, D. L., J. Appl. Polymer Sci. 12, 1653 (1968).CrossRefGoogle Scholar
  12. 12).
    Duckett, R. A., S. Rabinowitz and I. M. Ward, J. Mater. Sci. 5, 909 (1970).CrossRefGoogle Scholar
  13. 13).
    Brady, T. E. and G. S. Y. Yeh, J. Appl. Phys. 42, 4622 (1971).CrossRefGoogle Scholar
  14. 14).
    Gleiter, H. and A. S. Argon, Phil. Mag. 24, 71 (1971).CrossRefGoogle Scholar
  15. 15).
    Rabinowitz, S., I. M. Ward and J. S. C. Parry, J. Mater. Sci. 5, 29 (1970).CrossRefGoogle Scholar
  16. 16).
    Argon, A. S., Lecture given at Oxford (1972).Google Scholar
  17. 17).
    Pampillo, C. A. and L. A. Davis, J. Appl. Phys. 42, 4674 (1971).CrossRefGoogle Scholar
  18. 18).
    Bauwens, J. C., J. Mater. Sci. 7, 577 (1972).CrossRefGoogle Scholar
  19. 19).
    Bauwens, J. C., C. Bauwens-Corwet and G. Homès, J. Polymer Sci. 7-A2, 1745 (1969).Google Scholar
  20. 20).
    Bauwens-Crowet, C., J. C. Bauwens and G. Homès, J. Mater. Sci. 7, 176 (1972).CrossRefGoogle Scholar
  21. 21).
    Cuddihy, E. and J. Moacanin, Epoxy Resins. Amer. Chem. Soc., p. 96 (1970).Google Scholar
  22. 22).
    Ergying, H., J. Chem. Phys. 4, 283 (1936).CrossRefGoogle Scholar
  23. 23).
    Cottrell, A. H., An Introduction to Metallurgy (London, 1971).Google Scholar
  24. 24).
    Schoeck, G., Phys. stat. sol. 8, 499 (1965).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1975

Authors and Affiliations

  • E. Pink
    • 1
  1. 1.Erich-Schmid-Institut für Festkörperphysik der Österreichischen Akademie der WissenschaftenLeobenAustria

Personalised recommendations