Thermodynamic characterization of metastable organic liquids at the quasi-static glass-transition-temperature

  • H. G. Kilian
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 58)


Describing the metastable equilibrium states at the quasi-static glass transition temperature of organic liquids with the help of the “Frenkel model” as “voidsaturated-systems” it turns out that these states can be thermodynamically characterized by a common value of the specific excess entropy (“iso-excess-entropystate”) if an “iso-excess-volume state” at this temperature does exist. Therefore pronounced short range ordering producing the same specific entropy content of the total system should be apparent at this temperature independent of the structure of the molecules thermselves. This hypothesis can be shown to be valid for various polymer solvent mixtures too. An understanding of this general result may be related to criteria of stability of metastable quasi-static organic liquids at their temperature of glass transition.


Virial Coefficient Void Formation Organic Liquid Excess Entropy Metastable Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Mackenzie, J. D., Modern Aspects of the Vitreous State, Butterworths (1960).Google Scholar
  2. 2).
    Hosemann, R. and S. N. Bagchi, Direct Analysis of Diffraction of Matter, Worth Holland (1962).Google Scholar
  3. 3).
    Pechhold, W., Kolloid-Z. u. Z. Polymere 251, 818 (1973).CrossRefGoogle Scholar
  4. 4).
    Ovchinnikov, Yu. K., G. S. Markova and V. A. Kargin, Polymer Sci. USSR 11, 369 (1969).CrossRefGoogle Scholar
  5. 5).
    Bokhyan, E. B., Yu. K. Ovchinnikov, G S. Markova and V. A. Kargin, Polymer Sci. USSR 13, 2026 (1971).CrossRefGoogle Scholar
  6. 6).
    Wilkes, C. E. and M. H. Lehr, J. Macromol. Sci. B 7, 225 (1973).CrossRefGoogle Scholar
  7. 7).
    Robertson, R. E., J. Phys. Chem. 69, 1575 (1965).CrossRefGoogle Scholar
  8. 8).
    Bose, E., Review Physics 8, 513 (1907).Google Scholar
  9. 9).
    Ornstein, L. S. and W. Kast, Faraday Soc. 19, 932 (1933).Google Scholar
  10. 10).
    Frank, W., H. Goddar and H. A. Stuart, J. Polym. Sci. B 5, 711 (1967).Google Scholar
  11. 11).
    Schoon, Th. G. F., Proc. Internat. Rubber Conf. 277 (1967).Google Scholar
  12. 12).
    Yeh, G. S. and P. H. Geil, J. Macromol. Sci. B 1, 235, 251 (1967).CrossRefGoogle Scholar
  13. 13).
    Yeh, G. S. Y., Macromol. Sci. B 6, 451, 456 (1972).CrossRefGoogle Scholar
  14. 14).
    Klement, J. J. and P. H. Geil, J. Macromol. Sci. B 6, 31 (1972).CrossRefGoogle Scholar
  15. 15).
    Frenkel, J. I., Koll. 190, 1 (Berlin, 1957).Google Scholar
  16. 16).
    Eyrius, H., J. Chem. Phys. 4, 283 (1936).CrossRefGoogle Scholar
  17. 17).
    Hirai, N. and W. Eyring, J. Appl. Phys. 29, 810 (1958).CrossRefGoogle Scholar
  18. 18).
    Kanig, G., Kolloid-Z. u. Z. Polymere 190, 1 (1963).CrossRefGoogle Scholar
  19. 19).
    Kilian, H. G., Colloid & Polymer Sci., 252, 353–357 (1974)CrossRefGoogle Scholar
  20. 20).
    Fox, T. G. and P. J. Flory, J. Appl. 21, 581 (1950).CrossRefGoogle Scholar
  21. 21).
    Kanig, G., Kolloid-Z. u. Z. Polymere 233, 829 (1969).CrossRefGoogle Scholar
  22. 22).
    Williams, M. L., R. F. Landel and J. D. Ferry, J. Far. Sco. 77, 3701 (1955).Google Scholar
  23. 23).
    Simha, R. and R. F. Boyer, J. Chem. Phys. 37, 1003 (1962).CrossRefGoogle Scholar
  24. 24).
    Maocamir, J. and R. Simha, J. Chem. Phys. 45, 964 (1966).CrossRefGoogle Scholar
  25. 25).
    Miller, A. A., J. Pol. Sci. A 1, 1857, 1865 (1963).Google Scholar
  26. 26).
    Miller, A. A., J. Pol. Sci. A 2, 1095 (1964).Google Scholar
  27. 27).
    Boudi, A., J. Pol. Sci. A 2, 3159 (1964).Google Scholar
  28. 28).
    Jenckel, E. and R. Heusch, Koll.-Z. 130, 89 (1953).CrossRefGoogle Scholar
  29. 29).
    Rehage, G., Koll.-Z. 196, 97 (1964).CrossRefGoogle Scholar
  30. 30).
    Haase, R., Thermodynamik der Mischphasen (1956).Google Scholar
  31. 31).
    Flory, P. J., Chemistry (1953).Google Scholar
  32. 32).
    Lax, D'Ans, Taschenbuch für Chemiker (1964).Google Scholar
  33. 33).
    Tompa, H., Polymer Solutions (London, 1956).Google Scholar
  34. 34).
    Callen, Thermodynamics (1960).Google Scholar
  35. 35).
    Borchers, K., private communication.Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1975

Authors and Affiliations

  • H. G. Kilian
    • 1
  1. 1.Abt. für Experimentelle Physik IUniversität UlmOberer Eselsberg

Personalised recommendations