Smooth frequency distribution derived from complex phases

A new technique for phonons in polymer chains
  • Christhard Schmid
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 58)


The frequency distribution g (ω) (density of states at frequency ω) of an isolated polymer chain (with arbitrary number γ of degrees of freedom per unit cell) is usually calculated approximately as a histogram from the phase frequency curve ω β(φ) (β = 1,..., γ) with a large set of real phases φ). In this paper a method is presented for calculating g (ω) exactly as a rational function of a small set of complex phases φi (ω) (i = 1,…, n 0γ, n 0 - range of interaction). The φi (ω) are the roots of a frequency dependent secular equation the coefficients of which are obtained by the theory of invariants (differentiation of the algorithm of Leverrier-Souriau). The method is of basic importance also for the computation of the Green function in space energy representation for realistic polymers. Analytical results are obtained for a polyatomic linear chain with arbitrary γ and n 0 = 1.


Dispersion Relation Polynomial Matrix Complex Phasis Solid State Phys Dynamical Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Kirkwood, J. G., J. Chem. Phys. 7, 506 (1939).CrossRefGoogle Scholar
  2. 2).
    Pitzer, S. J., J. Chem. Phys. 8, 711 (1940).CrossRefGoogle Scholar
  3. 3).
    Liang, C. Y., S. Krimm and G. B. B. M. Sutherland, J. Chem. Phys. 25, 543 (1956).CrossRefGoogle Scholar
  4. 4).
    Bowers, W. and H. B. Rosenstock, J. Chem. Phys. 18, 1056 (1950).CrossRefGoogle Scholar
  5. 5).
    van Hove, L., Phys. Rev. 89, 1189 (1953).CrossRefGoogle Scholar
  6. 6).
    Maradudin, A. A., E. W. Montroll, G. H. Weiss and I. P. Ipatova, Solid State Phys. Suppl. 3, 1 (1971)Google Scholar
  7. 7).
    Wunderlich, B., J. Chem. Phys. 37, 1207 (1962).CrossRefGoogle Scholar
  8. 8).
    Gilat, G. and G. Dolling, Phys. Lett. 8, 304 (1964).CrossRefGoogle Scholar
  9. 9).
    Piseri, L. and G. Zerbi, J. Chem. Phys. 48, 3561 (1968).CrossRefGoogle Scholar
  10. 10).
    Kitagawa, T. and T. Miyazawa, Bull. Chem. Soc. Japan 43, 372 (1970).CrossRefGoogle Scholar
  11. 11).
    Gilat, G. and L. J. Raubenheimer, Phys. Rev. 144, 320 (1966).CrossRefGoogle Scholar
  12. 12).
    Schmid, C. and H. Hölzl, J. Phys. C: Solid State Phys. 6, 2401 (1973).CrossRefGoogle Scholar
  13. 13).
    Hölzl, K. and C. Schmid, J. Phys. C: Solid State Phys. 8, 2235 (1975).CrossRefGoogle Scholar
  14. 14).
    Schmid, C. and K. Hölzl, J. Polym. Sci. A2 10, 1881 (1972).CrossRefGoogle Scholar
  15. 15).
    Zerbi, G., Conference of the European Physical Society on “Radiation Scattering of Bulk Polymers', Strasburg, 1972.Google Scholar
  16. 16).
    Zbinden, R., Infrared Spectroscopy of High Polymers. (New York, 1964.)Google Scholar
  17. 17).
    Hölzl, K. and C. Schmid, to be published.Google Scholar
  18. 18).
    Zerbi, G., Applied Spectroscopy Reviews (New York, 1969).Google Scholar
  19. 19).
    Faddeev, D. K. and V. N. Faddeeva, Computational Methods of Linear Algebra. (San Francisco-London, 1963.)Google Scholar
  20. 20).
    Kitagawa, T. and T. Miyazawa, Adv. in Polymer Sci. 9, 335 (1972).Google Scholar
  21. 21).
    Schmid, C., J. Phys. C: Solid State Phys. 6, L458 (1973).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1975

Authors and Affiliations

  • Christhard Schmid
    • 1
  1. 1.Institut Laue-LangevinGrenoble

Personalised recommendations