Skip to main content

Present status and problems of X-ray lithography

  • Chapter
  • First Online:

Part of the book series: Advances in Solid State Physics ((ASSP,volume 20))

Abstract

Very intense technological efforts for increasing the density of integration of semiconductor devices have been made in the development of new and economical lithography methods for structures below 2 μm. The lithography methods used up to now in production are working with UV radiation in the region near 400 nm. The resolution limit due to Fresn'el diffraction allows the replication of structure dimensions down to 3–4 μm. A further improvement of the optical lithography (introduction of demagnifying projection printing instead of 1∶1 proximity exposure) probably will lead to powerful production machines enabling the reproduction of structures with dimensions down to 1 μm. On the other hand, the expenditure increases rapidly when decreasing the resolution limits. For dropping the structure size below 1 μm, the alternative lithography methods are electron-beam writing and X-ray lithography. Additionally, an application of these methods for larger structures could be furthered by an improvement of the yield.

X-ray lithography is a direct further development of 1∶1 proximity printing, with the help of a mask, by drastically lowering the wavelength. This means the maintenance of a relatively simple process, also in the case of very small structures. But an important condition, if X-ray lithography is to be a practical method, is the availability of an economical X-ray source in the wavelength region of 1 nm with nearly parallel radiation. Because at this wavelength there are no problems with Fresn'el diffraction, and the distortions caused by the secondary electrons generated in the resist are much lower compared with electron-beam writing, structures down to 0.1 μm are achievable with high aspect ratios.

Although the very good replication features have been confirmed in many experiments there are many problems to be solved, especially concerning the radition source, the resist- and the masktechnology. The application of X-ray lithography could mainly provide advantages in the mass production of VLSI devices with constant design. The domain of e-beam writing, besides mask production, could be the production of circuits with frequent changes in design (e.g., in the phase of circuit development).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hersener, Th. Ricker, Wiss. Ber. AEG-Telefunken 52 (1979), 1–2

    Google Scholar 

  2. R. C. Eden, Int. Elec. Dev. Meet. Washington 1978

    Google Scholar 

  3. E. Avai, K. Kinchi, H. Asakawa, Rev. Electr. Comm. Lab. 27, Nos. 1–2, Jan./Feb. 1979

    Google Scholar 

    Google Scholar 

  4. J. W. Bossung, E. S. Muraski, Solid State Techn., Aug. 1979, S. 109

    Google Scholar 

  5. A. Barrand, C. Rosilio, A. Ruandel-Teirier, Sol. State Techn., Aug. 1979, S. 120

    Google Scholar 

  6. R. Feder, E. Spiller, J. Topalian, J. Vac. Sci. Technol. 12, 1975, S. 1332

    Article  ADS  Google Scholar 

  7. D. C. Flanders, H. I. Smith, J. Vac. Sci. Technol. 15, 1978, S. 1001.

    Article  ADS  Google Scholar 

  8. D. C. Flanders, H. I. Smith, H. W. Lehmann, R. Widmer, D. C. Shaver, Appl. Phys. Lett. 32 (1978), S. 112.

    Article  ADS  Google Scholar 

  9. R. A. Geshner, Solid State Technol., Jun. 1979, S. 69

    Google Scholar 

  10. D. L. Spears, H. I. Smith, Sol. State Technol. 15, 1972, S. 21

    Article  Google Scholar 

  11. D. L. Spears, H. I. Smith, Electr. Lett. 8, 1972, S. 102

    Article  ADS  Google Scholar 

  12. H. I. Smith, D. L. Spears, E. Stern, Deutsche Auslageschrift 2302116 (1978), Anmeldung 1972

    Google Scholar 

  13. A. Heuberger, Abschlußbericht zum BMFT-Forschungsvorhaben NT 783 (1979)

    Google Scholar 

  14. E. Bassous, R. Feder, E. Spiller, J. Topalian, sol. State Techn. 1 (1976), S. 55.

    Google Scholar 

  15. C. J. Schmidt, P. V. Lenzo, E. G. Spencer, J. Appl. Phys. 46 (1975), S. 4080

    Article  ADS  Google Scholar 

  16. R. A. Cohen, R. W. Mountain, D. L. Spears, H. I. Smith, M. A. Lemma, S. E. Bernacki, MIT Lincoln Lab., Lexington, Mass. 02173, Tech. Note 1973-38, Sept. 20, 1973 AD-769857/4

    Google Scholar 

  17. H. I. Smith, S. E. Bernacki, J. Vac. Sci. Technol. 12, 1321 (1975)

    Article  ADS  Google Scholar 

  18. J. H. McCoy, P. A. Sullivan, Electron and Ion Beam Science and Technology, 6th Intern. Conf., ed. by R. Bakish (Electrochem. Soc., Princeton, N.J. 1974), p. 3

    Google Scholar 

  19. S. E. Bernacki, H. I. Smith, Electron and Ion Beam Science and Technology, 6th Intern. Conf., ed. by R. Bakish (Electrochem. Soc., Princeton, N. J. 1974), p. 34

    Google Scholar 

  20. E. Spiller, R. Feder, J. Topalian, E. Castellani, L. Romankiw, M. Heritage, Solid State Techn. 19, April (1976), S. 62

    Google Scholar 

  21. E. Bassous, R. Feder, E. Spiller, J. Topalian, IEDM 1975, Washington

    Google Scholar 

  22. E. Bassous, R. Feder, E. Spiller., J. Topalian, Solid State Technol (1976), 55

    Google Scholar 

  23. H. I. Smith, D. C. Flanders Jap. J. Appl. Phys. 16, Suppl. 16-1, 61 (1977)

    Google Scholar 

  24. K. Suzuki, J. Matsui, T. Kadota, T. Ouo, Japan J. Appl. Phys. 17 (1978), S. 1447

    Article  ADS  Google Scholar 

  25. A. Heuberger, L. Csepregi, 15th Symp. Electron, Ion, Photon Beam Technology., Boston (1979)

    Google Scholar 

  26. T. Funayama, Y. Takayama, T. Inagaki, M. Nakamura, J. Vac. Sci. Technol. 12, 1324 (1975)

    Article  ADS  Google Scholar 

  27. D. Maydan, G. A. Coquin, H. J. Levinstein, A. K. Sinha, D. N. K. Wang, 15th Symp. Electron, Ion Photon Beam Technology, Boston (1979)

    Google Scholar 

  28. R. K. Watts, K. E. Bean, T. L. Brewer, X-Ray lithography with aluminium radiation and SiC mask, Proc. 8th Int. Conf. Electron Ion Beam Science and Technology, Seattle (1978), 453

    Google Scholar 

  29. A. Heuberger, L. Csepregi, H. Betz, in preparation

    Google Scholar 

  30. L. Cl. Yuan, P. W. Alley, A. Bamberger, G. F. Dell, H. Uto, Nucl. Instr. a. Methods 127 (1975), S. 17

    Article  ADS  Google Scholar 

  31. J. S. Greeneich, IEEE Trans. Electron Devices ED-22, 434 (1975)

    Article  Google Scholar 

  32. D. Maydan, G. A. Coquin, J. R. Maldonado, J. M. Moran, S. Somekh, G. N. Taylor, Proc. Int. Conf. Mcirolithography, Paris (1977), 1975

    Google Scholar 

  33. D. C. Flanders, H. I. Smith, J. Vac. Sci. Technol. 15 (1978), 995

    Article  ADS  Google Scholar 

  34. G. P. Hughes, L. Down, 8th Int. Conf. Electron Ion Beam Science and Technology, Seattle (1978)

    Google Scholar 

  35. R. Feder, D. Hofer, L. Romankiw, G. Wardly, 8th Int. Conf. Electron Ion Beam Science and Technology, Seattle (1978)

    Google Scholar 

  36. P. Tischer, B. Schneider-Gmelch, H. G. Wolff, Proc. Microcircuit Engineering '79, Aachen (1979), 90

    Google Scholar 

  37. D. Mayden, G. A. Coguin, J. R. Maldonado, S. Somekh, D. Y. Lou, G. N. Taylor, IEEE Trans. Electron Devices ED-22, 429 (1975)

    Article  Google Scholar 

  38. J. C. Greenwood, J. Electrochem. Soc. 116 (1969), S. 1325

    Article  Google Scholar 

  39. H. Bohler, J. Greschner, W. Kulcke, P. Nehmiz, Vortrag auf der Physikertagung, Berlin, Okt., 1978

    Google Scholar 

  40. H. Betz, K. Fey, A. Heuberger, P. Tischer, III Trans. on Electron Devices ED-26, 1979, S. 693

    Article  Google Scholar 

  41. A. K. Gaind, E. W. Hearn, J. Electrochem. Soc. 125 (1978), S. 1939

    Article  Google Scholar 

  42. J. Trotel, B. Fay, Proceedings of the International Conference on Microlithography, Paris, France, pp. 201–209, June 1977

    Google Scholar 

  43. M. Yoshimatsu, S. Kozaki, Topics in Applied Physik H. J. Queisser, Editor Chapter 2; Springer Verlag 1977

    Google Scholar 

  44. Tsuguo Yamaoka, Takahiro Tsunoda, Yoshitaka Goto, Presented at the SPSE International Symposium on Advanced in Photopolymer System, Nov. 14–17, 1978, Washington D. C. Received, Nov. 17 (1978)

    Google Scholar 

  45. M. Green, Academic Press New York London 1963

    Google Scholar 

  46. Datenblatt der Fa. Rigaku

    Google Scholar 

  47. Satoshi Nakayama, Toa Hayusaha, S. Yamazaki, Review of the Electrical Communication Laboratories 27; November 1–2, Januar, Februar 1979

    Google Scholar 

  48. D. B. Wittry, Department of Material Science and Electrical Engineering, University of Southern California, Los Angeles. Ca. 90007 and R. S. Messenger, T. S. Sao-Sahib, A. B. Jones and J. P. Reekstin, Rockwell Internat. Corporation Electronics Research Center 3370 Mi al ma Ave Aneheiven Ca 92803

    Google Scholar 

  49. J. R. Maldonado, M. E. Poulsen, T. E. Saunders, F. Vratny, A. Zacharias, Bell Telephone Laboratories Murray Hill, New Jersey

    Google Scholar 

  50. David A. Nelson, Jr., Arthur L. Ruoff, Department of Materials Science and Engineering, Cornell University, Ithaca New York 14853, J. Appl. Phys. 50 (8) August 1979

    Google Scholar 

  51. J. Schwinger, Phys. Rev. 75, Nov. 12, Jun. 15, 1949

    Google Scholar 

  52. A. A. Sokolov, I. M. Ternov, Synchrotron Radiation, Pergamon Press, 1968

    Google Scholar 

  53. C. Kunz, Proceedings of the IV International Conference on Vacuum Ultraviolet Radiation Physics, Hamburg, July 22–26, 1974

    Google Scholar 

  54. S. Doniach, I. Lindan, W. E. Spicer, H. Winick, J. Vac. Sci. Technol. 12, No. 6, Nov. Dec. 1975

    Google Scholar 

    Google Scholar 

  55. D. Rüsbüldt, K. Thimm, Nuclear Instruments and Methods 116 (1974) 125–140

    Article  Google Scholar 

  56. E. E. Koch, Desy-Bericht F41-76/08, September 1976

    Google Scholar 

  57. C. Kunz, Desy-Bericht F41-76/12, Dezember 1976

    Google Scholar 

  58. I. Lindau, H. Winick, J. Vac. Sci. Technol. 15 (3), May/June 1978

    Google Scholar 

    Google Scholar 

  59. E. Spiller, P. E. Eastman, R. Feder, W. D. Grobman, W. D. Gudat, J. Topalian, Desy-Report SR-76/11, June 1976

    Google Scholar 

  60. C. Kunz, Topics in Current Physics, Synchrotron Radiation, Editor C. Kunz, Springer, 1979

    Google Scholar 

  61. Technische Studie zum Bau einer 800-MeV-Speicherring-Anlage für Synchrotronstrahlung in Berlin, Berlin 24.9.1978

    Google Scholar 

  62. H. Aristone, S. Matsui, K. Miriwaki, S. Hasegawa, S. Namba, Proc. of the Symosium on Electron and Ion Beam Sc. and Techn., 8th Int. Conference, Seattle, 1978, 468

    Google Scholar 

  63. private communication Thimm

    Google Scholar 

  64. private communication Shiuizu (MITI), Member of the Program-Committee of X-Ray Lithography

    Google Scholar 

  65. P. J. Mallozzi, H. M. Epstein, R. G. Jung, D. C. Applebaum, B. P. Fairand, W. J. Gallagher, R. L. Hecker, M. C. Jour. Appl. Phys. 45, No. 4, 1974

    Google Scholar 

    Google Scholar 

  66. M. R. Peckerar, J. R. Greig, D. J. Nagel, R. E. Pecharcek, R. R. Whitlock, Proc. 8th Int. Conf. Electron Ion Beam Science and Technology, Seattle 1978, 432–443

    Google Scholar 

  67. Naohiro Yanaguchi, Jour. of the Phys. Sco. Jap. 47, No. 1, July 1979

    Google Scholar 

    Google Scholar 

  68. R. A. McCorkle, H. J. Vollmer, Rev. Sci. Instrum. 48, No. 8, August 1977

    Google Scholar 

    Google Scholar 

  69. R. A. McCorkle, J. Phys. B: Atom Molec. Phys. 11, No. 14, 1978

    Google Scholar 

    Google Scholar 

  70. R. A. McCorkle, IBM-Research-Report, IC 7680 (33137), 28, May 1979

    Google Scholar 

  71. R. A. McCorkle, J. L. Cox, Jr., IBM-Research-Report, RC 7836 (33645, 17.7.1979)

    Google Scholar 

  72. private communication von R. A. McCorkle

    Google Scholar 

  73. M. Hatzakis, Applied Polymer Symposium No. 23, 73–86 (1974)

    Google Scholar 

  74. M. Hatzakis, C. M. Tiny, N. Viswanathan, Proc. of the 6th Intern. Conference on Electron and Ion Beam Science and Technology 1974, S. 542–557

    Google Scholar 

  75. H. Betz, H. Sotobayashi, unpublished

    Google Scholar 

  76. A. C. Ouano, Polymer Engineering and Science, March 1978, 18, No. 4

    Google Scholar 

    Google Scholar 

  77. James S. Greeneich, J. Electrochem. Soc.: Solid State Science and Technology 122, No. 7, July 1975

    Google Scholar 

    Google Scholar 

  78. M. J. Bowden, L. F. Thompson, Applied Polymer Symposium, No. 23, 99–106 (1974)

    Google Scholar 

  79. E. D. Roberts, Appl. Polym. Symp. No. 23, 87–98 (1974)

    Google Scholar 

  80. F. Asmussen, H. Sotobayashi, Zwischenbericht, Forschungsvorhaben NT 09609

    Google Scholar 

  81. S. Nonogaki, H. Mokismita, N. Sniton, Appl. Polym. Symp. No. 23, 117–123 (1974)

    Google Scholar 

  82. E. D. Feit, R. R. Heidenreich, L. F. Thompson, Appl. Polym. Symp. No. 23, 125–138 (1974)

    Google Scholar 

  83. E. D. Feit, M. F. Wurk, G. W. Kanemloff, J. Vac. Sci. Technol. 15 (3), May/June 1978

    Google Scholar 

    Google Scholar 

  84. Tsuguo Yancaoka, Takahiro Tsunoda, Yoshitaka Goto, Photographic Sciences and Engineering 23, No. 4, July/Aug. 1979

    Google Scholar 

    Google Scholar 

  85. M. Charlesby, in Atomic Radiation and Polymers, Pergamon Press, New York 1960

    Google Scholar 

  86. Osamu Saito, Journal of the Physical Soc. of Japan 13, No. 12, Dec. 1958

    Google Scholar 

    Google Scholar 

  87. A. N. Broers, M. Hatzakis, 10th Symposium on Electron, Ion and Laser Beam Technology, gaithersburg, Maryland, May 1969

    Google Scholar 

  88. M. Hatzakis, J. Electrochem. Soc.: Electroch. Technology 116, No. 7, July 1969

    Google Scholar 

    Google Scholar 

  89. D. Broyde, The Bell System Techn. Jour. 49, No. 9, Nov. 1970

    Google Scholar 

    Google Scholar 

  90. M. Y. Ku, L. C. Scala, J. Electrochem. Soc.: Solid State Sciences 116, No. 7, July 1969

    Google Scholar 

    Google Scholar 

  91. L. F. Thompson, E. D. Feit, M. J. Bowden, P. V. Lanzo, E. G. Spencer, J. Electr. Soc.: Sol. St. Science and Techn 121, No. 11, Nov. 1974

    Google Scholar 

    Google Scholar 

  92. I. Haller, R. Feder, M. Hatzakis E. Spiller, J. Electr. Soc.: Solid State Science and Technology 126, No. 1, Jan. 1900

    Google Scholar 

    Google Scholar 

  93. W. Gudat, in „Die Anwendung über den Einsatz von Speicherringen in der Halbleitertechnik”, Bericht einer Studiengruppe, Bonn, Juni 1977

    Google Scholar 

  94. Y. Tanaka, Sem. +Integr. Circuits Techn., Soc. of Electrochem., Japan, Nov. 26–30, Tokyo

    Google Scholar 

  95. E. Spiller, R. Feder, Topics in Applied Physics, H. J. Queisser, Editor Chapter 3; Springer Verlag 1977

    Google Scholar 

  96. S. Buchmann, J. Hersener, 9. Kolloquium über Mikromorphologie und Mikroanalyse von Oberflächen, März 1976

    Google Scholar 

  97. J. M. Shaw, M. Hatzakis, IEEE Transaction on Electron Devices, ED-25, No. 4, 4th April 1978

    Google Scholar 

    Google Scholar 

  98. M. J. Bonden, L. F. Thompson, J. P. Ballantyne, Journal of Vacuum Science and Technology 12, November 6, December 1975

    Google Scholar 

  99. J. M. Meran, G. N. Taylor, Bell Laboratories Murray Hill, New Jersey, TM 78

    Google Scholar 

  100. B. L. Henke, E. S. Ebisu, Advances in X-Ray Analysis, Plenum Press, New York 1974, 17, p. 150

    Google Scholar 

  101. A. Heuberger, H. Betz, Berichte zum Forschungsvorhaben BMFT NT 844

    Google Scholar 

  102. Studie „VLSI-Technology and Market Forcast” von Gnostic Concepts Ive (1979)

    Google Scholar 

  103. R. E. Gegenwarth, F. P. Laming, SPIE J. 100 (1977), 66

    ADS  Google Scholar 

  104. R. C. Henderson, SPIE J. 100 (1977), 151

    ADS  Google Scholar 

  105. E. U. Hearn, E. H. Tekaat, G. H. Schwutke, Microelectron. Reliab. 15 (1976), S. 61

    Article  Google Scholar 

  106. S. M. Hu, Appl. Phys. Lett. 31 (1977), S. 53

    Article  ADS  Google Scholar 

  107. L. D. You, Appl. Phys. Lett. 33 (1978), S. 756

    Article  ADS  Google Scholar 

  108. D. Stephani, B. Mensemann, Abschlußbericht zum BMFT-geförderten Projekt NT 835/1

    Google Scholar 

  109. E. Kasper, Th. Ricker, NTG-Diskussionssitzung “Silizium Grundmaterial für Großintegration”, 18./19.6.1979, Stuttgart

    Google Scholar 

  110. Th. Ricker, 42. Physikertagung 1978 Berlin, Vortrag D 12.12

    Google Scholar 

  111. J. H. McCoy, P. A. Sullivan, Electron a Ion Beam Science a. Technol. 7th Intern. Conf. ed. by R. Bakish (Electr. Chem. Soc., Princeton, 1976) S. 536

    Google Scholar 

  112. J. H. McCoy, P. A. Sullivan, Solid State Technol. Vol. 19 (1976), S. 59

    Google Scholar 

  113. J. H. McCoy, P. A. Sullivan, Amerikanische Patentschrift 4,085,329 (1978)

    Google Scholar 

  114. D. C. Flanders, H. I. Smith, Appl. Phys. Lett. Vol. 31 (1977), 426

    Article  ADS  Google Scholar 

  115. S. Austin, H. J. Smith, D. C. Flanders, J. Vac. Sci. Technol. Vol. 15

    Google Scholar 

  116. H. P. Kleinknecht, RCA Ltd. Ch-8048 Zürch, Switzerland, Druckschrift 174-08

    Google Scholar 

  117. A. Zacharias, 15th Symposium on Electron, Ion and Photon Beam Technology, Boston, May 29-June 1, 1979

    Google Scholar 

  118. A. Franks, X-Ray Optics, Sc. Progr., Oxvord 64 (1977), 371

    Google Scholar 

  119. V. E. Cosslett, W. C. Nixon, X-Ray Microscopy, Cambridge University Press (1960), 87

    Google Scholar 

  120. E. Spiller, IBM-Report RC 8088 (≠ 34971) 9.1.1980

    Google Scholar 

  121. O. A. Ershov, I. A. Brytov, A. P. Lukivskii, Optics Sepctros. 22 (1967), 60

    ADS  Google Scholar 

  122. A. Franke, Materials Sci. Engeneering 19 (1975), 169

    Article  MathSciNet  Google Scholar 

  123. Dagele private communication

    Google Scholar 

  124. Mühlhaupt private communication

    Google Scholar 

  125. H. Betz, A. Heuberger, Proc. Microcircuit Engeneering, 79, Sept. 1979

    Google Scholar 

  126. W. D. Grobmann, to be published in Handbook on Synchrotron Radiation, Vol. I, Ed. E. E. Koch, North Holland, Amsterdam

    Google Scholar 

  127. H. Betz, P. Hofbauer, A. Heuberger, J. Vac. Sci. Technol. 16 (3), May/June 1979

    Google Scholar 

    Google Scholar 

  128. J. M. Aitken, IEEE Trans. Electr. Dev. ED-26 (1979), 372

    Article  Google Scholar 

  129. R. A. Gdula, IEEE Trans. Electr. Dev. ED-26 (1979), 644

    Article  ADS  Google Scholar 

  130. S. E. Bernacki, H. I. Smith, IEEE Trans. Electr. Dev. ED-22 (1975), S. 421

    Article  Google Scholar 

  131. H. L. Stover, P. A. Sullivan, J. J. McCoy, F. L. Hause, H. Yuan, E. Harari, Spring Meeting of the Electrochem. Soc. (Seattle 1978), 78-1 Electrochem. Soc., Princeton, N.J. (1978), S. 956

    Google Scholar 

  132. H. L. Stover, F. O. Hause, D. McGreevy, Solid State Technol., Aug. 1979, S. 95

    Google Scholar 

  133. M. Peckerar, R. Fulton, P. Blaise, D. Brown, R. Whitlock, 15th Symp. Electron Ion, Photon Beam Technology, Boston (1979)

    Google Scholar 

  134. K. F. Galloway, IEEE Trans. Nuclear Sci. NS-25 (1978), S. 1469

    Article  ADS  Google Scholar 

  135. A. Heuberger, C. Werner, to be published

    Google Scholar 

  136. K. F. Galloway, S. Mayo, Solid State Techn. (1979), S. 96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Treusch

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Heuberger, A., Betz, H., Pongratz, S. (1979). Present status and problems of X-ray lithography. In: Treusch, J. (eds) Festkörperprobleme 20. Advances in Solid State Physics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0116745

Download citation

  • DOI: https://doi.org/10.1007/BFb0116745

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08026-6

  • Online ISBN: 978-3-540-75365-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics