Skip to main content

Electron and ion motion in oxide cathodes

  • Chapter
  • First Online:
Halbleiterprobleme

Part of the book series: Advances in Solid State Physics ((ASSP,volume HP3))

Abstract

This paper surveys recent work on the oxide cathode. This work points to a physical model of the oxide cathode in which (1) current is carried through the cathode by semiconduction through the oxide and by pore conduction through the interstices between oxide particles, (2) both conduction process are controlled by the properties of the semiconducting oxide, (3) the oxide is activated by the production of electron donors, (4) the donors, as well as other constituents of the oxide, are mobile at the normal operating temperature of the cathode, and (5) electrolysis of the donors limits the density of free electrons available for conduction near the emitting surface and the density of free electrons available for emission at the emitting surface.

With 13 figures

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Wehnelt, Ann. der Physik, Series 4, 4 (1904), S. 425.

    Article  ADS  Google Scholar 

  2. M. Benjamin and H. P. Rooksby, Phil. Mag. 15 (1933), S. 810.

    Google Scholar 

  3. M. Benjamin and H. P. Rooksby, Phil. Mag. 61 (1933), S. 19.

    Google Scholar 

  4. W. G. Burghers, Z. Physik 80 (1933), S. 352.

    Article  ADS  Google Scholar 

  5. H. Haber and S. Wagener, Z. Tech. Physik 23 (1942), S. 1.

    Google Scholar 

  6. O. W. Richardson, “The Emission of Electricity from Hot Bodies”, Longmans, Green and Co., London 1921.

    Google Scholar 

  7. A. Wehnelt, Ergeb. der Exak. Naturw., Band IV, Berlin 1925.

    Google Scholar 

  8. S. Dushman, Rev. Mod. Phys. 2 (1930), S. 381.

    Article  ADS  Google Scholar 

  9. J. A. Becker, Rev. Mod. Phys. 7 (1935), S. 95.

    Article  ADS  Google Scholar 

  10. J. P. Blewett (Part I), J. Appl. Phys. 10 (1939), S. 668; (Part II), J. Appl. Phys. 10 (1939), S. 831.

    Article  ADS  Google Scholar 

  11. J. P. Blewett, J. Appl. Phys. 17 (1946), S. 643.

    Article  ADS  Google Scholar 

  12. A. Eisenstein, “Oxide-Coated Cathodes”, “Advances in Electronics”, Academic Press, Inc. (1948).

    Google Scholar 

  13. G. Hermann and S. Wagener, “The Oxide Cathode”, Vol. I and II, Chapman and Hall, London 1952

    Google Scholar 

  14. C. Herring and M. H. Nicolis, Rev. Mod. Physics 21 (1949), S. 185.

    Article  ADS  Google Scholar 

  15. F. Deininger, Ann. der Phys. Series 4, 25 (1908), S. 285.

    Article  Google Scholar 

  16. K. Fredenhagen, Phys. Zeit. 13 (1921), S. 539; Phys. Zeit. 15 (1914), S. 19.

    Google Scholar 

  17. H. D. Arnold, Phys. Rev. 16 (1920), S. 70.

    Article  ADS  Google Scholar 

  18. L. R. Koller, Phys. Rev. 25 (May 1925), S. 671.

    Article  ADS  Google Scholar 

  19. W. Espe, Wiss. Veröff. Siemens Werke 5 (III), (1927), S. 2946.

    Google Scholar 

  20. H. Rothe, Z. Physik 36 (1926), S. 737.

    Article  ADS  Google Scholar 

  21. J. A. Becker, Phys. Rev. 34 (1929), S. 1323.

    Article  ADS  Google Scholar 

  22. J. A. Becker and R. W. Sears, Phys. Rev. 38 (1931), S. 2193.

    Article  ADS  Google Scholar 

  23. A. Gehrts, Z. Tech. Phys. 11 (1930), S. 246.

    Google Scholar 

  24. F. Detels, John. D. Drahtl. Telegra. u. Teleph. 30 (1927), S. 10, 52.

    Google Scholar 

  25. E. F. Lowry, Phys. Rev. 35 (1930), S. 1367.

    Article  ADS  Google Scholar 

  26. A. L. Reimann and R. Morgoci, Phil. Mag. 9 (1930), S. 440.

    Google Scholar 

  27. A. L. Reimann and L. R. G. Treloar, Phil. Mag. 12 (1931), S. 1073.

    Google Scholar 

  28. W. Meyer and A. Schmidt, Z. Techn. Physik 13 (1932), S. 134.

    Google Scholar 

  29. A. Gehris, Naturwiss. 20 (1932), S. 732.

    Article  ADS  Google Scholar 

  30. M. Benjamin and H. P. Rooksby, Phil. Mag. 15 (1933), S. 810; 16 (1933), S. 519; 20 (1935), S. 1.

    Google Scholar 

  31. W. Schottky, Naturwiss. 23 (1935), S. 17.

    Google Scholar 

  32. W. Heinze and S. Wagener, Z. Tech. Physik 47 (1936), S. 45.

    Google Scholar 

  33. W. Heinze and S. Wagener, Z. Physik 110 (1936), S. 164.

    Article  ADS  Google Scholar 

  34. E. Nishibori and H. Kawamura, Proc. Phys. Math. Soc. Japan 22 (1940), S. 378.

    Google Scholar 

  35. N. B. Hannay, D. McNair, and A. H. White, J. Appl. Phys. 20 (1949), S. 669.

    Article  ADS  Google Scholar 

  36. E. A. Coomes, J. Appl. Phys. 17 (1946), S. 647.

    Article  ADS  Google Scholar 

  37. H. P. Rooksby, Jour. Roy. Soc. Arts 88 (1940), S. 308.

    Google Scholar 

  38. A. Fineman and A. Eisenstein, J. Appl. Phys. 17 (1946), S. 663.

    Article  ADS  Google Scholar 

  39. A. Eisenstein, J. Appl. Phys. 20 (1949), S. 776.

    Article  ADS  Google Scholar 

  40. A. Eisenstein, J. Appl. Phys. 22 (1951), S. 138.

    Article  ADS  Google Scholar 

  41. D. A. Wright, Proc. Roy. Soc. London (A) 190 (1947), S. 394.

    Article  ADS  Google Scholar 

  42. D. A. Wright, Proc. Phys. Soc. 62 (1944), S. 188.

    Google Scholar 

  43. J. F. Waymouth, Jr. J. Appl. Phys. 22 (1951), S. 80.

    Article  ADS  Google Scholar 

  44. H. B. Frost, Proc. IRE 40 (1952), S. 230.

    Google Scholar 

  45. W. Dahlke and H. Rothe, Die Telefunkenröhre 11 (1953), S. 127.

    Google Scholar 

  46. L. S. Nergaard and R. M. Matheson, RCA Review 15 (1954), S. 225.

    Google Scholar 

  47. D. McNair, R. T. Lynch, and N. B. Hannay, J. Appl. Phys. 24 (1953), S. 1335.

    Article  ADS  Google Scholar 

  48. H. J. Lemmens, M. J. Jansen, and R. Loosjes, Philips Tech. Rev. 2 (1950), S. 341.

    Google Scholar 

  49. H. Katz and K. L. Rau, Frequenz 5 (1951), S. 192.

    Google Scholar 

  50. A. W. Hull, Phys. Rev. 56 (1939), S. 86.

    Article  ADS  Google Scholar 

  51. B. J. Thompson, Phys. Rev. 36 (1930), S. 1415.

    Article  ADS  Google Scholar 

  52. O. H. Schade, Proc. IRE 31 (1943), S. 341.

    Article  Google Scholar 

  53. E. A. Coomes, J. Appl. Phys. 17 (1946), S. 654.

    Article  ADS  Google Scholar 

  54. L. S. Nergaard, D. G. Burnside, and R. P. Stone, Proc. IRE 36 (1948), S. 412.

    Article  Google Scholar 

  55. W. S. Nottingham, Phys. Rev. 49 (1935), S. 78.

    Article  ADS  Google Scholar 

  56. A. R. Hutson, Phy. Rev. 98 (1950), S. 889.

    Article  ADS  Google Scholar 

  57. R. L. E. Seifert and T. E. Phipps, Phys. Rev. 53 (1938), S. 493; 56 (1939), S. 652.

    Article  ADS  Google Scholar 

  58. D. Turnbull and T. E. Phipps, Phys. Rev. 56 (1939), S. 663.

    Article  ADS  Google Scholar 

  59. W. B. Nottingham, Phys. Rev. 57 (1940), S. 935.

    Article  ADS  Google Scholar 

  60. Munik. La Berge and Coomes, Phys. Rev. 80 (1950), S. 887.

    Article  ADS  Google Scholar 

  61. E. G. Brock, A. L. Houde, and E. A. Coomes, Phys. Rev. 89 (1953), S. 851.

    Article  ADS  Google Scholar 

  62. A. Eisenstein, J. Appl. Phys. 20 (1949), S. 776.

    Article  ADS  Google Scholar 

  63. R. L. Sproull, Phys. Rev. 67 (1945), S. 166.

    Article  ADS  Google Scholar 

  64. R. M. Matheson and L. S. Nergaard, J. Appl. Phys. 23 (1952), S. 869.

    Article  ADS  Google Scholar 

  65. L. S. Nergaard, RCA Rev. 13 (1952), S. 464.

    Google Scholar 

  66. H. B. Frost, Doctor's Dissertation, MIT 1954.

    Google Scholar 

  67. I. Langmuir, Phys. Rev. 22 (1923), S. 357.

    Article  ADS  Google Scholar 

  68. R. M. Matheson and R. H. Plumlee, Report on the Fourteenth Annual Conference on Physical Electronics, MIT 1954.

    Google Scholar 

  69. L. S. Nergaard, R. H. Plumlee, and R. M. Matheson, Report on the Twelfth Annual Conference on Physical Electronics, MIT 1952.

    Google Scholar 

  70. A. Rose, Phys. Rev. 97 (1955), S. 1538.

    Article  ADS  Google Scholar 

  71. L. S. Nergaard and R. M. Matheson, RCA Rev. 15 (1954), S. 335.

    Google Scholar 

  72. Unpublished data taken in measurements preliminary to the Ba deposition experiments reported in [65] L. S. Nergaard, RCA Rev. 13 (1952), S. 464 and [69] L. S. Nergaard, R. H. Plumlee, and R. M. Matheson, Report on the Twelfth Annual Conference on Physical Electronics, MIT 1952.

    Google Scholar 

  73. B. R. D. Nijboer, Proc. Phys. Soc. London 61 (1939), S. 575.

    ADS  Google Scholar 

  74. R. Loosjes and H. J. Vink, Philips Tech. Rev. 11 (1950), S. 271.

    Google Scholar 

  75. R. Loosjes and H. J. Vink, Le Vide 5 (1950), S. 731.

    Google Scholar 

  76. R. M. Matheson and L. S. Nergaard, RCA Review 15 (1954), S. 485.

    Google Scholar 

  77. R. H. Plumlee and L. P. Smith, J. Appl. Phys. 21 (1950), S. 811.

    Article  ADS  Google Scholar 

  78. Private communication. Adress: Dr. E. O. Kane, Research Laboratory, the Knolls, Gen. El. Co. Schenectady N.Y.

    Google Scholar 

  79. K. T. Compton and I. Langmuir, Rev. Mod. Physics 2 (1930), S. 123.

    Article  ADS  Google Scholar 

  80. P. N. Russell and A. Eisenstein, Phys. Rev. J. Appl. Phys. 25 (1954), S. 954.

    Article  ADS  Google Scholar 

  81. L. Apker, E. Taft, and J. Dickey, Phys. Rev. 84 (1951), S. 508.

    Article  ADS  Google Scholar 

  82. W. W. Tyler, Phys. Rev. 76 (1949), S. 1887.

    Article  ADS  Google Scholar 

  83. W. W. Tyler and R. L. Sproull, Phys. Rev. 83 (1950), S. 548.

    Article  ADS  Google Scholar 

  84. H. B. DeVore and J. W. Dewdney, Phys. Rev. 83 (1951), S. 805.

    Article  ADS  Google Scholar 

  85. H. B. DeVore, RCA Review 13 (1952), S. 453.

    Google Scholar 

  86. R. J. Zollweg, Phys. Rev. 97 (1955), S. 288.

    Article  ADS  Google Scholar 

  87. J. A. Krumhansl, Phys. Rev. 82 (1951), S. 573.

    Article  Google Scholar 

  88. Private Communication.

    Google Scholar 

  89. M. Sakamoto, LeVide 9 (1954), No. 52-53, S. 109.

    Google Scholar 

  90. T. Hibi and K. Ishikawa, Phys. Rev. 87 (1952), S. 673.

    Article  ADS  Google Scholar 

  91. T. Hibi and K. Ishikawa, LeVide 9 (1954), No. 52-53, S. 121.

    Google Scholar 

  92. V. L. Stout, Phys. Rev. 89 (1953), S. 310.

    Article  ADS  Google Scholar 

  93. H. W. Gandy, Doctor's Dissertation, Univ. of Missouri, 1953.

    Google Scholar 

  94. K. Noga and K. Nokamura, LeVide 9 (1954), No. 52-53, S. 113.

    Google Scholar 

  95. Private communication. Adress: Nathan Schwartz, Electronics Laboratory, Gen. El. Co. Syracuse, N. Y.

    Google Scholar 

  96. E. O. Kane, J. Appl. Phys. 22 (1951), S. 1214.

    Article  ADS  Google Scholar 

  97. W. C. Dash, Phys. Rev. 92 (1953), S. 68.

    Article  ADS  Google Scholar 

  98. A. Smakula, A. Physik 59 (1950), S. 603.

    ADS  Google Scholar 

  99. J. Ortusi, LeVide 9 (1954), No. 52-53, S. 100.

    Google Scholar 

  100. R. L. Sproull, R. S. Bever, and G. Libowitz, Phys. Rev. 92 (1953), S. 77.

    Article  ADS  Google Scholar 

  101. R. E. Plumlee, Report on the Fourteenth Physical Electronics Conference, MIT 1954.

    Google Scholar 

  102. L. S. Nergaard, LeVide 9 (1954), No. 52-53, S. 171.

    Google Scholar 

  103. R. Loosjes and H. J. Vink, Philips Res. Rep. 4 (1949), S. 449.

    Google Scholar 

  104. R. Loosjes, H. J. Vink, and C. G. Jansen, J. Appl. Phys. 21 (1950), S. 350.

    Article  ADS  Google Scholar 

  105. C. G. J. Jansen and R. Loosjes, Philips Res. Rep. 8 (1953), S. 21.

    Google Scholar 

  106. C. G. J. Jansen, R. Loosjes, and K. Compaan, Philips Res. Rep. 9 (1954), S. 241.

    Google Scholar 

  107. E. B. Hensley, J. Appl. Phys. 23 (1952), S. 1122.

    Article  ADS  Google Scholar 

  108. R. J. Young, J. Appl. Phys. 23 (1952), S. 1129.

    Article  ADS  Google Scholar 

  109. R. Forman, Phys. Rev. 96 (1954), S. 1479.

    Article  ADS  Google Scholar 

  110. R. H. Plumlee, “Electrolytic Transport Phenomena in the Oxide Cathode”, RCA Review (in press).

    Google Scholar 

  111. Cornelis Timmer, “The Density of Color Centers in Barium Oxide as a Function of the Vapor Pressure of Barium”, Doctoral Dissertation, Cornell University, Ithaca, N. Y., Feb. 1955; Journal of Applied Physics (in press).

    Google Scholar 

  112. R. H. Plumlee, “Principal Electron Donors in the Oxide Cathode”, Journ. of Applied Physics, Vol. 27, No. 6, pp. 659–660, June, 1956.

    Article  ADS  Google Scholar 

  113. R. H. Plumlee, “The Electron Donor Centers in the Oxide Cathode”, RCA Review (in press).

    Google Scholar 

  114. T. Arizumi and S. Narita, “Activation of the Oxide Cathode”, Jour. Phys. Soc. of Japan, Vol. 6, pp. 15–20, 1951. *** DIRECT SUPPORT *** A00AX043 00008

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Friedr. Vieweg & Sohn

About this chapter

Cite this chapter

Nergaard, L.S. (1956). Electron and ion motion in oxide cathodes. In: Halbleiterprobleme. Advances in Solid State Physics, vol HP3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0116509

Download citation

  • DOI: https://doi.org/10.1007/BFb0116509

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75300-1

  • Online ISBN: 978-3-540-75302-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics