Advertisement

Is the distribution of entanglements homogeneous in polymer melts?

  • J. Bastide
  • F. Boué
  • E. Mendes
  • F. Zielinski
  • M. Buzier
  • C. Lartigue
  • R. Oeser
  • P. Lindner
Chapter
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 91)

Abstract

Neutron-scattering experiments have been performed on elongated polystyrene melts consisting of relatively short labelled chains (M<100 000) dispersed in a matrix of very long ones (M>106), which were not labelled. Important anomalies with respect to the theoretical predications have been observed. In particular, the iso-intensity lines exhibit, in a large range of relaxation times, striking butterfly shapes and an unexpected orientation: the long axis of these patterns is oriented parallel to the stretching direction. As a working assumption, we propose to relate this phenomenon to a non-homogeneous arrangement of chain entanglements in the melts. As a matter of facts, it has been proposed that elongated gels should exhibit butterfly patterns (The whole solvent being labelled) as a result of a sort of anisotropic unscreening of cross-linking heterogeneities. Experiments were performed on samples synthesized specially in order to match the assumptions of the model and butterfly patterns have effectively been observed. The same type of mechanism can be driven by an heterogeneity of chain entanglement in the case of assymetrical melts: the short labelled chains may behave as a kind of polymeric solvent and accumulate, during the relaxation, in the less entangled regions (which should be also regions of lower constraint).

Key words

Polymer melts gels percolation clusters neutron scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boué F (1982) J Phys (Paris) 43:137Google Scholar
  2. 2.
    Boué F (1987) Adv Polym Sci 82:47CrossRefGoogle Scholar
  3. 3.
    Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon Press, OxfordGoogle Scholar
  4. 4.
    de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NYGoogle Scholar
  5. 5.
    Bastide J, Buzier M, Boué F (1988) In: Richter D, Springer T (eds) Polymer Motion in Dense Systems. Springer, Berlin, pp. 112–120Google Scholar
  6. 6.
    Boué F, Bastide J, Buzier M (1989) In: Baumgärtner A, Picot C (eds) Molecular Basis of Polymer Networks. Springer, Berlin, pp. 65–81Google Scholar
  7. 7.
    Boué F, Bastide J, Buzier L, Lapp A, Herz J, Vilgis TA (1991) Coll Polym Sci 269:195–216CrossRefGoogle Scholar
  8. 8.
    Bastide J, Leibler L, Prost J (1991) Macromolecules 23:1821CrossRefGoogle Scholar
  9. 9.
    Daoud M, Leibler L, (1988) Macromolecules 21:1497CrossRefGoogle Scholar
  10. 10.
    Mendes E, Lindner P, Buzier M, Boué F, Bastide J (1991) Phys Rev Lett 66:1595–1598CrossRefGoogle Scholar
  11. 11.
    Bastide J, Mendes E, Boué F, Buzier M, Lindner P (1990) Makrom Chem Makrom Symp 40:81–99Google Scholar
  12. 12.
    Mendes E (1991) Thesis, Université Louis Pasteur, StrasbourgGoogle Scholar
  13. 13.
    Higgs P, to be publishedGoogle Scholar
  14. 14.
    Boué F et al. (1992) Proceedings of EPS Meeting “PHysics of Polymer Networks” Alexisbad Germany, Prog Coll Pol Sci, to be publishedGoogle Scholar
  15. 15.
    Zielinski F, (1991) Thesis, Université Pierre et Marie Curie Paris VIGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1993

Authors and Affiliations

  • J. Bastide
    • 1
    • 4
  • F. Boué
    • 2
  • E. Mendes
    • 1
  • F. Zielinski
    • 2
  • M. Buzier
    • 1
  • C. Lartigue
    • 3
  • R. Oeser
    • 3
  • P. Lindner
    • 3
  1. 1.ICS (CNRS) StrasbourgFrance
  2. 2.LLB, CEN SaclayFrance
  3. 3.ILLGrenobleFrance
  4. 4.ICS-CRMStrasbourg CedexFrance

Personalised recommendations