Skip to main content

Modeling of solvation interactions in non-polar dispersions of colloidal particles using the liquid state theory of adhesive hard sphere mixtures

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science VI

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 89))

Abstract

Colloidal particles dispersed in a non-polar solvent are modeled by a binary mixture of large spheres in a “solvent” of small spheres using the liquid state model of adhesive hard sphere mixtures. The discrete nature of the solvent molecules is explicitly taken into account. Solvation forces can be described fairly well using both solvent-solvent and solvent-solute interactions. By increasing the solvent-solvent interaction, keeping the solvent-solute interaction constant, the effective attraction between the large colloidal particles increases. The isothermal osmotic compressibility goes to infinity when the adhesive strength between the solvent molecules becomes very high and phase separation may occur (“poor” solvation). By increasing the solute-solvent interaction, keeping the solvent-solvent interaction constant, the effective repulsion between the large particles increases (“good” solvation). — When the solvent density is small (near the “critical” value), however, solvent-solute interactions may ultimagely lead again to effective attractions between the large spheres, if the adhesive strength between the solvent and solute particles is large enough. This phenomenon may be interpreted in terms of “bridge formation”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caljé AA, Agterof WGM, Vrij A (1977) In: Mittal KL (ed) Micellization, Solubilization, and Microemulsions. Plenum Press, Vol. 2

    Google Scholar 

  2. Herder CE, Ninham BW, Christenson HK (1989) J Chem Phys 90:5801–5805

    Article  CAS  Google Scholar 

  3. Gee ML, Israelachvili JN (1990) J Chem Soc Faraday Trans 86:4049–4058

    Article  CAS  Google Scholar 

  4. Chan DYC, Mitchell DJ, Ninham BW, Pailthorpe BA (1978) Chem Phys Lett 56:533–536

    Article  CAS  Google Scholar 

  5. Henderson D (1988) J Colloid Interface Sci 121:486–490

    Article  CAS  Google Scholar 

  6. Biben T, Hansen JP (1990) Europhys Lett 12:347–352

    Article  CAS  Google Scholar 

  7. Biben T, Hansen JP (1991) Phys Rev Lett 66:2215–2218

    Article  CAS  Google Scholar 

  8. Jamnik A, Bratko D, Henderson DJ (1991) J Chem Phys 94:8210–8215

    Article  CAS  Google Scholar 

  9. Vrij A, Jansen JW, Dhongt JKG, Pathmamanoharan C, Kops-Werkhoven MM, Fijnaut HM (1983) Faraday Discuss Chem Soc 76:19–35

    Article  Google Scholar 

  10. Penders MHGM, Vrij A (1991) Physica A 173:532–547

    Article  CAS  Google Scholar 

  11. Baxter RJ (1968) J Chem Phys 49:2770–2774

    Article  CAS  Google Scholar 

  12. Watts RO, Henderson D, Baxter RJ (1971) Adv Chem Phys 21:421–430

    Article  CAS  Google Scholar 

  13. Barboy B (1975) Chem Phys 11:357–371

    Article  CAS  Google Scholar 

  14. Barboy B, Tenne R (1979) Chem Phys 38:369–387

    Article  CAS  Google Scholar 

  15. Perram JW, Smith ER (1975) Chem Phys Lett 35:138–140

    Article  CAS  Google Scholar 

  16. Perram JW, Smith ER (1976) Chem Phys Lett 39:328–332

    Article  CAS  Google Scholar 

  17. Vrij A (1982) J Colloid and Interface Sci 90:110–116

    Article  CAS  Google Scholar 

  18. Duits MHG, May RP, Vrij A, de Kruif CG (1991) Langmuir 7:62

    Article  CAS  Google Scholar 

  19. Dickinson EJ (1989) J Colloid and Interface Sci 132:274–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Helm M. Lösche H. Möhwald

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Penders, M.H.G.M., Vrij, A. (1992). Modeling of solvation interactions in non-polar dispersions of colloidal particles using the liquid state theory of adhesive hard sphere mixtures. In: Helm, C., Lösche, M., Möhwald, H. (eds) Trends in Colloid and Interface Science VI. Progress in Colloid & Polymer Science, vol 89. Steinkopff. https://doi.org/10.1007/BFb0116267

Download citation

  • DOI: https://doi.org/10.1007/BFb0116267

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0913-9

  • Online ISBN: 978-3-7985-1680-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics