Skip to main content

Experimental and theoretical aspects on cluster size distribution of latex particles flocculating in presence of electrolytes and water soluble polymers

  • C. Wetting, Adsorption And Interfaces
  • Conference paper
  • First Online:
Trends in Colloid and Interface Science III

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 79))

Abstract

The size distribution of negatively charged polystyene latex particles flocculated in the presence of 0.15 M NaCl or in the presence of poly(4-vinylpyridine) was measured using an automatic particle counter. The time evolutions of the size distribution are well described at large time by the formulas:

$$\begin{gathered}c(g,t) = t^{ - 2} \psi (gt^{ - 2} ) \hfill \\N(t) \sim t^{ - 2} , \hfill \\\end{gathered}$$

, c(g, t) being the number of flocs containing g primary colloids at time t, and N(t) is the total number of flocs of any size, z is a scaling exponent and the function ω does not depend explicitly on time. These laws are in agreement with the theoretical predictions based either on Smoluchovski’s equation assuming a dynamic scaling argument, or on Monte-Carlo simulations on a three-dimensional lattice. If the flocculation occurs in the presence of an excess of electrolyte, z is equal to 1, however if P4VP is the flocculating agent, the value of z is related to the polymer concentration. The kinetics are discussed on the basis of the structure of the collision frequency in Smoluchovski’s equations:

. K(g, n) defines a rate constant. The total number of collisions of g- and n-sized flocs is K(g, n) C g C n , C g C n being the number of these flocs per unit volume. In this equation R g , R n and D g , D n are, respectively, the radius of gyration, and the diffusion coefficients of g- and n-sized flocs. This simple expression holds well for an excess of electrolyte situation or at a polymer concentration were flocculation proceeds at a fast rate; Expression of K(g, n) ensures z=1. At low and large polymer concentrations, we have z<1, which is interpreted on the basis of a model of the colloid interface in the presence of adsorbed polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Napper DH (1983) Polymeric Stabilization of Colloid Dispersions. Colloid Science, Academic Press, New York

    Google Scholar 

  2. Vincent B (1982) Adv Colloid Interface Sci 4:193

    Article  Google Scholar 

  3. De Gennes PG (1981) Macromolecules 14:1637; (1982) ibid 15:492

    Article  Google Scholar 

  4. Jullien R, Botet R (1987) Aggregation and Fractal Aggregates. World Scientific, Singapore

    Google Scholar 

  5. Family F, Landau DP (eds) (1984) Kinetics of Aggregation and Gelation. North-Holland

    Google Scholar 

  6. Pefferkorn E, Pichot C, Varoqui R (1988) J de Physique, France 49:983

    Article  CAS  Google Scholar 

  7. Higuchi WI, Okada R, Stelter GA, Lemberger AP (1963) J Pharm Sci 52:49

    Article  CAS  Google Scholar 

  8. Ho NFH, Higuchi NI (1967) J Pharm Sci 56:148

    Google Scholar 

  9. Matthews BA, Rhodes CT (1968) J Colloid and Interface Sci 28:71

    Article  CAS  Google Scholar 

  10. Matthews BA, Rhodes CT (1970) J Colloid and Interface Sci 32:339

    Article  Google Scholar 

  11. Smoluchovski MV (1916) Phys Z 17:58

    Google Scholar 

  12. Meakin P, Vicsek T, Family F (1985) Phys Rev B 31:364

    Article  Google Scholar 

  13. Kolb M, Botet R, Jullien R (1983) Phys Rev Lett 51:1123

    Article  Google Scholar 

  14. Meakin P (1983) Phys Rev Lett 51:1119

    Article  Google Scholar 

  15. Swift DL, Friedlander SK (1964) J Colloid Sci 19:621

    Article  Google Scholar 

  16. Lushnikov AA (1973) J Colloid Interface Sci 45:549

    Article  CAS  Google Scholar 

  17. Mabire F, Audebert R, Quivoron C (1984) J Colloid Interface Sci 97:120

    Article  CAS  Google Scholar 

  18. Mabire F (1981) Thesis Université P et M Curie, Paris

    Google Scholar 

  19. Howard GJ, Leung WM (1981) Colloid Polym Sci 259:1031

    Article  CAS  Google Scholar 

  20. Flory PJ (1953) Principles of Polymers Chemistry. Cornell University Press, Ithaca

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Bothorel E. J. Dufourc

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Varoqui, R., Pefferkorn, E. (1989). Experimental and theoretical aspects on cluster size distribution of latex particles flocculating in presence of electrolytes and water soluble polymers. In: Bothorel, P., Dufourc, E.J. (eds) Trends in Colloid and Interface Science III. Progress in Colloid & Polymer Science, vol 79. Steinkopff. https://doi.org/10.1007/BFb0116208

Download citation

  • DOI: https://doi.org/10.1007/BFb0116208

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0831-6

  • Online ISBN: 978-3-7985-1690-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics