Skip to main content

Critical phenomena in associative binary liquid mixtures with miscibility gap

  • Interfaces
  • Conference paper
  • First Online:
Trends in Colloid and Interface Science V

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 84))

Abstract

Measurements of the temperature and frequency dependence of ultrasonic absorption (frequency range 9 MHz<f<45 MHz) of an associative (chemically reactive) binary liquid mixture of critical composition — an isobutyric acid/water mixture — are analyzed in terms of the dynamic scaling theory of critical ultrasonic attenuation proposed by Ferrell and Bhattacharjee. The system-specific critical amplitude of relaxation rate of local composition fluctuations is known for that system from independent measurements. The data do not scale as expected. A temperature- and frequency-dependent ultrasonic background attenuation is observed. Measurements of ultrasonic attenuation of the same system in a broad frequency range (0.2 MHz<f 400 MHz) carried out by Kaatze et al. (J. Phys.Chem. 93 4955 (1989)) show a broad frequency spectrum of relaxation times. The low-frequency part of this spectrum of relaxation times observed away from the critical temperature is shifted to lower relaxation frequencies approaching the critical temperature. Its principle relaxation time increases in a characteristic manner. Data obtained for two other associative binary liquid mixtures with miscibility gap — 2,6-dimethyl pyridine/water and 2-butooxyethanol/water — show similar effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Ferrell RA, Bhattacharjee JK (1981) Phys Rev B 24:4095

    Article  Google Scholar 

  2. Ferrell RA, Bhattarcharjee JK (1985) Phys Rev A 31:1788

    Article  CAS  Google Scholar 

  3. Ferrel RA (1989) Int J Thermophys 10:369

    Article  Google Scholar 

  4. Binder K (1977) Phys Rev B 15:4425

    Article  CAS  Google Scholar 

  5. Mayer W, Woerman D (1988) J Phys Chem 92:2036

    Article  CAS  Google Scholar 

  6. Sieber M, Woermann D (1990) Ber Bunsenges Physik Chem (in press)

    Google Scholar 

  7. Harada Y, Suzuzki Y, Ishida Y (1980) J Phys Soc Jap 48:703

    Article  CAS  Google Scholar 

  8. Harada Y, Ishida Y (1981) Japn J Appl Phys 20 supple 20-3, 251

    Article  CAS  Google Scholar 

  9. Ishida Y, Harada Y (1980) Japn J Appl Phys 19:1563

    Article  CAS  Google Scholar 

  10. Garland CW, Sanchez G (1983) J Chem Phys 79:3090

    Article  CAS  Google Scholar 

  11. Sanchez G, Garland CW (1983) J Chem Phys 79:3100

    Article  CAS  Google Scholar 

  12. Jaschull G, Dunker H, Woermann D (1984) Ber Bunsenges Physik Chem 88:630

    Article  CAS  Google Scholar 

  13. Tanaka H, Nishi T (1985) Chem Phys 94:281

    Article  CAS  Google Scholar 

  14. Belkoura L, Harnisch FP, Kölchens S, Müller-Kirschbaum T, Woermann D (1987) Ber Bunsenges Phys Chem 91:1036

    Article  CAS  Google Scholar 

  15. Dunker H, Woermann D, Bhattacherjee JK (1983) Ber Bunsenges Phys Chem 87:591

    Article  CAS  Google Scholar 

  16. Belkoura L, Calenbuhr V, Müller-Kirschbaum T, Woermann D (1990) Ber Bunsenges Phys Chem (in press)

    Google Scholar 

  17. Kaatze U, Schreiber U (1989) J Phys Chem 93:4955

    Article  CAS  Google Scholar 

  18. Greer SC (1988) Int J Thermophys 9:761

    Article  CAS  Google Scholar 

  19. Kaatze U, Woermann D (1984) J Phys Chem 88:284

    Article  CAS  Google Scholar 

  20. Gutschick VP, Pings CJ (1971) J Chem Phys 55:3845

    Article  CAS  Google Scholar 

  21. Kaatze U, Schreiber U (1988) Chem Phys Lett 148:241

    Article  CAS  Google Scholar 

  22. Kaatze U, Woermann D (1982) Ber Bunsenges Physik Chem 86:81

    Article  CAS  Google Scholar 

  23. Baaken C, Belkoura L, Fusening S, Müller-Kirschbaum T, Woermann D (1990) Ber Bunsenges Physik Chem 99:150

    Google Scholar 

  24. Tanaka H, Wada Y, Nakajima H (1983) Chem Phys 75:37

    Article  CAS  Google Scholar 

  25. Mueller PE, Eden D, Garland CW, Williamson RC (1982) Phys Rev A 6:2272

    Article  Google Scholar 

  26. Tanaka H, Wada Y, Nakajima H (1982) Chem Phys 63:223

    Article  Google Scholar 

  27. Bloem E, Thoen J, van Dael W (1980) J Chem Phys 73:4628

    Article  Google Scholar 

  28. Zalcer G, Beysens D (1990) J Chem Phys 92:6747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Corti F. Mallamace

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Woermann, D. (1991). Critical phenomena in associative binary liquid mixtures with miscibility gap. In: Corti, M., Mallamace, F. (eds) Trends in Colloid and Interface Science V. Progress in Colloid & Polymer Science, vol 84. Steinkopff, Heidelberg. https://doi.org/10.1007/BFb0115959

Download citation

  • DOI: https://doi.org/10.1007/BFb0115959

  • Published:

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-16029-9

  • Online ISBN: 978-3-7985-1685-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics