Skip to main content

Phase electric birefringence measurements in attractive-type W/O microemulsion systems

  • Microemulsions
  • Conference paper
  • First Online:
Trends in Colloid and Interface Science V

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 84))

Abstract

The electric field-induced deformations and alignment contributions to Kerr constant in attractive-type inverted microemulsion systems are reviewed, especially a recent droplet pair model accounting for the observed sign reversal. Experimental measurements of the components of the complex Kerr constant B*(2ω), from phase electric birefringence approach, in the spectral range 102–2 107 Hz, have been performed at room temperature from two series w 0=7.3 (B k negative) and w 0=25 (B k positive) of the system water/benzyl n-hexadecyl dimethyl ammonium chloride (BHDC)/benzene as a function of the volume fraction. The results so far clearly strengthen, in a qualitative way, the proposed droplet pair model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eicke HF, Markovic Z (1981) J Colloid Interface Sci 79:151–158; (1982) Ibid 85:198–204

    Article  CAS  Google Scholar 

  2. Guering P, Cazabat AM (1983) J Phys Lett (Paris) 44:L601–L607

    Article  Google Scholar 

  3. Eicke HF, Hilfiker R, Thomas H (1985) Chem Phys Lett 120:272–275

    Article  CAS  Google Scholar 

  4. Guering P, Cazabat AM, Paillette M (1986) Europhysics Lett 2:953–960

    Article  CAS  Google Scholar 

  5. Paillette M, Guering P, Cazabat AM (1986) Opt Commun 60:244–250

    Article  CAS  Google Scholar 

  6. Cazabat AM, Chatenay D, Langevin D, Meunier J (1983) Faraday Discus Chem Soc 76:291–303

    Article  Google Scholar 

  7. Hilfiker R, Eicke HF, Hammerich H (1987) Helv Chem Acta 70:1531–1536

    Article  CAS  Google Scholar 

  8. Paillette M, Belhadj-Tahar N (1989) Progr Colloid Polym Sci 79:257–262

    Article  CAS  Google Scholar 

  9. v d Linden E, Geiger S, Bedeaux D (1989) Physica A 156:130–142

    Article  Google Scholar 

  10. Mayer G (1990) Chem Phys Lett 168:575–578

    Article  CAS  Google Scholar 

  11. Voigt W (1901) Ann Physik 4:197

    Article  CAS  Google Scholar 

  12. Havelock TH (1906) Proc Roy Soc A 77:170 (1908) Ibid A80:28; (1911) Ibid A84:492

    Article  Google Scholar 

  13. Mayer G (1984) Optics Comm 52:215–220

    Article  CAS  Google Scholar 

  14. Safran SA (1983) J Chem Phys 78:2073–2076

    Article  CAS  Google Scholar 

  15. Borkovec M, Eicke HF (1988) Chem Phys Lett 147:195–202

    Article  Google Scholar 

  16. Borkovec M, Eicke HF (1989) Chem Phys Lett 157:457–461

    Article  CAS  Google Scholar 

  17. Langevin D (1988) Acc Chem Res 21:255

    Article  CAS  Google Scholar 

  18. Shinoda K, Lindman B (1987) Langmuir 3:135

    Article  CAS  Google Scholar 

  19. Bedeaux D, Borkovec M, Eicke HF, v d Linden E (1990) Progr Colloid Polym Sci 81:60–63

    Article  Google Scholar 

  20. Huang JS, Milner ST, Farago B, Richter D (1987) Phys Rev Lett 59:2600–2603

    Article  CAS  Google Scholar 

  21. Farago B, Huang JS, Richter D, Safran SA, Milner ST (1990) Progr Colloid Polym Sci 81:60–63

    Article  CAS  Google Scholar 

  22. Langevin P (1910) Le Radium 7:249

    Article  Google Scholar 

  23. Guering P (1985) Thesis (Paris-Orsay) unpublished

    Google Scholar 

  24. Silberstein L (1917) Phil Mag 33:92, 215, 521

    Article  CAS  Google Scholar 

  25. Buckingham AD, Dunmur DA (1968) Trans Faraday Soc 64:1776

    Article  CAS  Google Scholar 

  26. Lemaire B, Bothorel P, Roux D (1983) J Chem Phys 87:1023–1028

    Article  CAS  Google Scholar 

  27. Paillette M (1982) Optics Comm 41:140–144

    Article  CAS  Google Scholar 

  28. Jada J (1988) Thesis (Strasbourg) unpublished; Jada J, Lang J, Zana R, Makhloufi R, Hirsche J, Candau SJ (1990) J Chem Phys 94:341

    Google Scholar 

  29. Chatenay D, Urbach W, Cazabat AM, Langevin D (1985) Phys Rev Lett 54:2253–2256

    Article  CAS  Google Scholar 

  30. Paillette M, in press

    Google Scholar 

  31. v Dijk MA, Joosten JGH, Levine YK, Bedeaux D (1989) J Chem Phys 93:2506–2512

    Article  Google Scholar 

  32. Paillette M, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Corti F. Mallamace

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Paillette, M. (1991). Phase electric birefringence measurements in attractive-type W/O microemulsion systems. In: Corti, M., Mallamace, F. (eds) Trends in Colloid and Interface Science V. Progress in Colloid & Polymer Science, vol 84. Steinkopff, Heidelberg. https://doi.org/10.1007/BFb0115955

Download citation

  • DOI: https://doi.org/10.1007/BFb0115955

  • Published:

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-16029-9

  • Online ISBN: 978-3-7985-1685-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics