Skip to main content

Relaxation in networks strained in the glass-transition regime

  • Conference paper
  • First Online:
Transitions in oligomer and polymer systems

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 96))

Abstract

Relaxation in largely strained permanent networks is described. With the aid of thermodynamics of irreversible processes a constitutive equation is formulated whereby the equilibrium states of references are given by the van der Waals network strain energy. A key observation is that the shape of the relaxation time spectrum does not depend on the strain, straintype, strain-rate, temperature or pressure. The WLF-regime is typified therewith. “Below” the WLF-regime deformation becomes heterogeneous. Formation of a neck is observed. This process can be described by a universal power law. When the neck is formed relaxation during the stretch shows the same symmetries as in the WLF-regime. Yet, changes of place are, in addition, elastically activated. Stress-strain cycles of poly-methyl-methacrylate (PMMA) can be described even when a neck is formed. Fundamental questions about the nature of the glass transition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tamman G (1933) Der Glaszustand, Leopold Voss, Leipzig

    Google Scholar 

  2. Krausz AS, Eyring H (1975) Deformation Kinetics, Wiley, New York 1975

    Google Scholar 

  3. Eyring H (1936) J Chem Phys 4:283

    Article  CAS  Google Scholar 

  4. Schwarzl FR (1974) In: Kausch H, Hassel JA, Jaffee RI (eds) Deformation and Fracture of High Polymers, London, New York, 47

    Google Scholar 

  5. Schwarzl FR, Struik LCE (1968) Adv Relaxation Processes 1:102

    Google Scholar 

  6. Adam G, gibbs JH (1965) J Chem Phys 43:139

    Article  CAS  Google Scholar 

  7. Ferry JD (1980) Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York

    Google Scholar 

  8. Donth E (1981) Glasübergang (Glass-Transition), Akademie-Verlag, Berlin

    Google Scholar 

  9. Kovacs AJ (1963) Fortschr Hochpolym Forsch 3:394

    Google Scholar 

  10. Doi M, Edwards SF (1986) theory of Polymer Dynamics, Oxford Sci Pub, London

    Google Scholar 

  11. Pechhold W, Sautter E, v Soden W, Stoll B, Grossmann HP (1979) Makromol Chem Suppl 3:247

    Google Scholar 

  12. Rehage G (1981) J Macromol Sci, Part B 18:423

    Article  Google Scholar 

  13. Brereton MG, Davis GR (1977) Polymer 18:764

    Article  CAS  Google Scholar 

  14. Götze W (1991) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, Freezing and the Glass-Transition, North Holland, Amsterdam

    Google Scholar 

  15. Breuer H, Rehage G (1967) Koll Z Z Polym 216/17:159

    Article  Google Scholar 

  16. Breuer H, Rehage G (1966) Ber Bunsenges Phys Chem 70:1149

    CAS  Google Scholar 

  17. Goldbach G, Rehage G (1967) Rheol Acta 6:30

    Article  CAS  Google Scholar 

  18. goldbach G, Rehage G (1967) J Polym Sci, Polym Symp 16:2289

    Google Scholar 

  19. Ambacher H, Enderle HF, Kilian HG, Sauter A (1989) Progr Colloid Polym Sci 80:209

    CAS  Google Scholar 

  20. Kraus V, Kilian HG, v Soden W (1992) Progr Colloid Polym Sci 90:27

    Article  CAS  Google Scholar 

  21. Kraus V, Kilian HG (1993) Makromol Chem, Macromol Symp 76:113

    CAS  Google Scholar 

  22. Kraus V, Kilian HG, Saile M (1994) Polymer 35:2349

    Article  Google Scholar 

  23. Kilian HG (submittedt to Macromolecules)

    Google Scholar 

  24. Lednicky F, Pelzbauer Z (1982) J Macromol Sci, Phys B 21:19

    Article  Google Scholar 

  25. Kaempf G, Orth H (1975) J Macromol Sci, Phys B 11:151

    Article  Google Scholar 

  26. Grosskurth (1977) Colloid Polym Sci 255:120

    Article  CAS  Google Scholar 

  27. Yeh GSY (1972) Crit Rev Macromol Sci 1:173

    Google Scholar 

  28. Johari BP (1973) J Chem Phys 58:1766

    Article  CAS  Google Scholar 

  29. Cohen MH, Crest GS (1979) Phys Rev B 20:1077

    Article  CAS  Google Scholar 

  30. Chang WV, Bloch R, Tschoegl NW (1976) Proc Nat Acad Sci USA 73:4

    Google Scholar 

  31. Brown DJ, Windle AH (1984) J of Mat Sci 19:2039

    Article  CAS  Google Scholar 

  32. Fischer EW, Hellmann GP, Spiess HW, Hörth SJ, Ecarius U, Wehrle M (1985) Macromol Chem Suppl 12:189

    Article  CAS  Google Scholar 

  33. Meier G, Gerharz B, Boese D, Fischer EW (1990) J Chem Phys 94:3050

    Article  Google Scholar 

  34. Kilian HG (1981) Polymer 22:209

    Article  CAS  Google Scholar 

  35. Kilian HG, Vilgis T (1984) Colloid Polym Sci 262:15

    Article  CAS  Google Scholar 

  36. Kuhn W, Grün F (1942) Kolloid Z 101:248

    Article  CAS  Google Scholar 

  37. Treloar LRG (1975) The Physics of Rubber Elasticity, 3rd ed, Clarendon Press, Oxford

    Google Scholar 

  38. Mark JE, Erman B (1988) Rubberlike Elasticity — A Molecular Primer, Wiley, New York-Brisbane-toron-to-Singapore

    Google Scholar 

  39. Geen AE, Adkins JE (1970) Large Elastic Deformations, sd Ed., Clarendon Press, Oxford

    Google Scholar 

  40. Ambacher H, Kilian HG (1991) Elastomeric Polymer Networks, Merk E, Erman B (eds) Prentice Halls Polym Sci and Engineering Series, 124

    Google Scholar 

  41. Meixner J, Reik HG (1963) thermodynamik der irreversiblen Prozesse, Springer, Berlin

    Google Scholar 

  42. Meixner J (1954) Z Naturforsch 9a:654

    Google Scholar 

  43. Kilian HG, Vilgis T (1984) Colloid Polym Sci 262ß696

    Google Scholar 

  44. Enderle HF, Kilian HG, Vilgis T (1984) Coll Polym Sci 262:696

    Article  CAS  Google Scholar 

  45. Haase R (1963) thermodynamik der irreversiblen Prozesse, Fortschritte der Physikalischen Chemie, Vol 8, Steinkopff, Darmstadt

    Google Scholar 

  46. de Groot SR, Mazur P (1962) Non-Equilibrium Thermodynamics, North Holland, Amsterdam

    Google Scholar 

  47. Onsager L (1931) Phys Rev 37:405

    Article  CAS  Google Scholar 

  48. Onsager L (1931) Phys rev 38:2265

    Article  CAS  Google Scholar 

  49. Boese D, Momper B, Meier G, Kremer F, Hagenah JU, Fischer EW (1989) J Chem Phys Macromolecules 22:4416

    Article  CAS  Google Scholar 

  50. Ngai KL, Mshimo S, Fytas G (1988) Macromolecules 21:3030

    Article  CAS  Google Scholar 

  51. Kraus V, Kilian HG, v Soden W (1992) Progr Colloid Polym Sci 90:27

    CAS  Google Scholar 

  52. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701

    Article  CAS  Google Scholar 

  53. Ferry JD (1980) Viscoelastic Properties of Polymers, John Wiley & Sons, New York

    Google Scholar 

  54. Schwarzl FR, Stavermann AJ (1953) J Appl Sci Res A4:127

    Google Scholar 

  55. Kraus V, Kilian HG, Saile M (1994) Polymer (in press)

    Google Scholar 

  56. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  57. Koenen JA, Heise B, Kilian HG (1989) J Polym Sci Part B, 27:1235

    Article  CAS  Google Scholar 

  58. Müller FH (1949) Koll Z 114:59

    Article  Google Scholar 

  59. Müller FH (1949) Koll Z 115:118

    Article  Google Scholar 

  60. Kilian HG (1994) Trends in Science (in press)

    Google Scholar 

  61. Ambacher H, Strauß M, Kilian HG, Wolff S (1991) Kautschuk + Gummi-Kunststoffe 44:1111

    CAS  Google Scholar 

  62. M. Strauß, Kilian HG, Hamm W (1994) rubber chem Technol 67:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -G. Kilian M. Pietralla

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Kilian, H.G., Kraus, V. (1994). Relaxation in networks strained in the glass-transition regime. In: Kilian, H.G., Pietralla, M. (eds) Transitions in oligomer and polymer systems. Progress in Colloid & Polymer Science, vol 96. Steinkopff. https://doi.org/10.1007/BFb0115733

Download citation

  • DOI: https://doi.org/10.1007/BFb0115733

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0985-6

  • Online ISBN: 978-3-7985-1672-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics