Skip to main content

The clay/water interface and its role in the environment

  • Conference paper
  • First Online:
Surfactants and Colloids in the Environment

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 95))

Abstract

Data are presented to show that the surfaces of a common clay mineral, montmorillonite, modify the properties of the nearby water to a depth of at least 3.5 nm and that the value of every water property depends exponentially on t, the thickness of the films of adsorbed water, but is independent of the character of the surfaces. The viscosity and yield point are among the properties of the water that are modified. A modification of either of these properties has a commensurate effect on the flow of water between adjacent surfaces. Data are also presented to show that the surface-induced modification of the water is responsible for the swelling of the clay mineral and affects its ability to adsorb solutes. The swelling of clay reduces the permeability of the soil and the adsorption of solutes by the clay reduces their mobility. Thus, clay-water interaction has a significant impact on the convective and diffusive transport of pollutants through the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller RJ, Low PF (1963) Soil Sci Soc Am Proc 27:605–609

    Article  Google Scholar 

  2. Clementz DM, Low PF (1976) In: Kerker M (ed) Colloid and Interface Sci Vol 3, Academic Press, New York, pp 485–502

    Google Scholar 

  3. Ruiz HA, Low PF (1976) In: Kerker M (ed) Colloid and Interface Sci Vol 3, Academic Press, New York, pp 503–515

    Google Scholar 

  4. Oliphant JL, Low PF (1983) J Colloid Interface Sci 95:45–50

    Article  CAS  Google Scholar 

  5. Sallé de Chou J, Low PF, Roth CB (1980) Clays Clay Minerals 28:111–118

    Article  Google Scholar 

  6. Fu MH, Zhang ZZ, Low PF (1990) Clays Clay Minerals 38:485–492

    Article  CAS  Google Scholar 

  7. Mulla DJ, Low PF (1983) J Colloid Interface Sci 95:51–60

    Article  CAS  Google Scholar 

  8. Kolaian JH, Low PF (1963) Soil Sci 95:376–384

    Article  CAS  Google Scholar 

  9. Low PF, Anderson DM, Hoekstra P (1968) Water Resources Res 4:379–394

    Article  Google Scholar 

  10. Anderson DM, Low PF (1958) Soil Sci Soc Am Proc 22:99–103

    Article  CAS  Google Scholar 

  11. Oster JD, Low PF (1964) Soil Sci Soc Am Proc 28:605–609

    Article  Google Scholar 

  12. Kay BD, Low PF (1975) Clays Clay Minerals 23:266–271

    Article  CAS  Google Scholar 

  13. Low PF (1976) Soil Sci Soc Am J 40:500–505

    Article  CAS  Google Scholar 

  14. Oliphant JL, Low PF (1982) J Colloid Interface Sci 89:366–373

    Article  CAS  Google Scholar 

  15. Zhang ZZ, Low PF (1989) J Colloid Interface Sci 133:461–472

    Article  CAS  Google Scholar 

  16. Sun Y, Lin HH, Low PF (1986) J Colloid Interface Sci 112:556–564

    Article  CAS  Google Scholar 

  17. Steele D (1971) Theory of vibrational spectroscopy, Saunders, Philidelphia

    Google Scholar 

  18. Tsubomora H (1956) J Chem Phys 24:927

    Article  Google Scholar 

  19. Pimentel GC, McClellan AL (1960) The hydrogen bond. Freeman and Co., San Francisco

    Google Scholar 

  20. Low PF, Anderson DM (1958) Soil Sci 86:251–253

    Article  CAS  Google Scholar 

  21. Verwey EJW, Overbeek JThG (1948) Theory of the stability of lyophobic colloids, Elsevier, Amsterdam

    Google Scholar 

  22. Low PF (1980) Soil Sci Soc Am J 44:667–676

    Article  CAS  Google Scholar 

  23. Low PF (1987) Langmuir 3:18–25

    Article  CAS  Google Scholar 

  24. Low PF (1987) In: Schultz LG, van Olphen H, Mumpton FA (eds) The Clay Minerals Soc, Bloomington, IN, pp 247–256

    Google Scholar 

  25. Viani BE, Low PF, Roth CB (1983) J Colloid Interface Sci 96:229–244

    Article  CAS  Google Scholar 

  26. Zhang F (1992) Ph D Thesis, Purdue Univ

    Google Scholar 

  27. Young A, Low PF, McLatchie AS (1964) J Geophysical Res 69:4237–4245

    Google Scholar 

  28. Zhang H, Zhang ZZ, Low PF, Roth CB (1993) Clay Minerals 28:25–31

    Article  CAS  Google Scholar 

  29. Low PF (1962) Clays Clay Minerals 9:219–228

    Article  CAS  Google Scholar 

  30. Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes, McGraw-Hill, New York

    Google Scholar 

  31. Zhang ZZ, Low PF, Cushman JH, Roth CB (1990) Soil Sci Soc Am J 54:59–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. J. Schwuger F. H. Haegel

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Low, P.F. (1994). The clay/water interface and its role in the environment. In: Schwuger, M.J., Haegel, F.H. (eds) Surfactants and Colloids in the Environment. Progress in Colloid & Polymer Science, vol 95. Steinkopff. https://doi.org/10.1007/BFb0115708

Download citation

  • DOI: https://doi.org/10.1007/BFb0115708

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0994-8

  • Online ISBN: 978-3-7985-1668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics