Skip to main content

Physico-chemical aspects of zeolite-A synthesis and application for environmental safe detergents

  • Conference paper
  • First Online:
Surfactants and Colloids in the Environment

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 95))

  • 663 Accesses

Abstract

Synthesis of zeolites is characterized by a long lag crystallization period. However, this period is not dead; many precrystallization processes are active, leading to nucleation, followed by rapid crystallization. The most lag-active species are complexes of aluminum and, to a lesser extent, silicium and sodium. If these complexes are exposed to non-equilibrium conditions or outside stress, modified zeolite-A can be obtained. This zeolite has a few properties important for surfactants: significantly higher rate of Ca2+ exchange, lattice windows large enough for Mg2+ binding (21 mg Mg2+ per g zeolite) and increased sorption capacity for nonionics and co-polymers. — In connection with trends (compact detergents) the outside zeolite surface area plays an important role. Only under non-equilibrium conditions can zeolite synthesis lead from low (1.3–2.6 m2/g) to high surface area (9–12 m2/g). Modification can also be made, respective catalytic or inhibitory properties for bleaching substances like perborate or peracids. — Appearance of huge quantities of zeolite in the environment (precostal and sludge fertilized field) might have negative side-effects. However, results with six microorganisms (Staphylococcus aureus — gram positive, Escherichia coli — gram negative, Bacillus subtilis, Thrichophyton mentagrophytes, Candida albians and Aspergillus fumigatus) show significant bactericidal effects. The effect is highest for the dangerous Thrichophyton mentagrophytes fungi; already 0.1% of zeolite suspension at 20°C is sufficient. In this respect, and due to high affinity for heavy metals, zeolite suspension at 20°C is sufficient. In this respect, and due to the high affinity for heavy metals, zeolite behaves as an environmental cleaner. Results with different algal species are not conclusive within the limited laboratory period of examination that has been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DE-OS 2412837 (1974) Henkel KGaA

    Google Scholar 

  2. DE-OS 2422655 (1974) US Patent 3852211, Procter & Gamble

    Google Scholar 

  3. Specker E (March 1993) Zeol Engineering Report, Zeol Engineering and Trading Ltd CH-6340 Baar, Switzerland

    Google Scholar 

  4. Milton RM (1959) US Patient, 2,882,243; Ibid 2,882,244

    Google Scholar 

  5. Schwuger M, Smulders E (1987) In: Gale Cutler W, Kissa E (eds) Detergency, Theory and Technology, Marcel Dekker, New York, pp 371–439

    Google Scholar 

  6. Derleth H, Walter L, Bretz K, Kurs A (1978) Ger Offen Patent, P 2705088.0

    Google Scholar 

  7. Ferris A (1977) GB Patent 23 049

    Google Scholar 

  8. Ettlinger M, Ferch H (1978) Manuf Chem Aerosol News 49:51–55

    CAS  Google Scholar 

  9. Yamane I, Nakazawa T (1986) In: Murakami Y, Lijima A, Ward JW (eds) New Developments in Zeolite Science and Technology, Kodansha/Elsevier, Tokyo/Amsterdam, pp 991–1000

    Google Scholar 

  10. Costa E, Lucas A, Uguina MA, Ruiz JC (1988) Ind Eng Chem Res 27: 1291–1296

    Article  CAS  Google Scholar 

  11. Flaningen EM, Breck DW (1960) Abstracts, 137th National Meeting of the American Chemical Society, pp 33M, Cleveland, Ohio

    Google Scholar 

  12. Flanigen EM (1973) Adv Chem Ser 121:119–139

    CAS  Google Scholar 

  13. McNicol BD, Pott GT, Loos KR (1972) J Phys Chem 76:3388–3396

    Article  CAS  Google Scholar 

  14. Khatami H, Flanigen EM Ref 12 pp 134

    Google Scholar 

  15. Barrer RM, Baynhan JW, Bultitude FW, Meier WM (1959) J Chem Soc 195:208

    Google Scholar 

  16. Kerr GT (1966) J Phys Chem 70:1047

    Article  CAS  Google Scholar 

  17. Kerr GT (1968) J Phys Chem 72:1385

    Article  CAS  Google Scholar 

  18. Barrer RM (1981) Hydrothermal Chemistry of Zeolites, Academic Press, London

    Google Scholar 

  19. Guth JL, Coullet P, Wey R (1980) In: Rees LVC (ed) Proc Fifth Int Conf on Zeolites, Heyden, London, pp 30–39

    Google Scholar 

  20. Roozeboom F, Robson HE, Chan SSh (1984) In: Ribeiro FR, Rodrigues EA, Rollmann LD, Naccache C (eds) Zeolites: science and Technology, Martinus Nijhoff, Hague, pp 127–147

    Google Scholar 

  21. Bodart P, Nagy JB, Gabelica Z (1986) J Chim Phys 83:777–792

    CAS  Google Scholar 

  22. Veda S, Koizumi M (1979) Amer Mineral 64:23–32

    Google Scholar 

  23. Vučelić D, Juranić N (1976) J Inorg Chem 38:2091–2112

    Google Scholar 

  24. Vučelić D (1977) J Chem Physics 66:43–51

    Article  Google Scholar 

  25. Vučelić V, Vučelić D, Karaulić D, Šušić M (1973) Thermochim Acta

    Google Scholar 

  26. Vučelić D, unpublished

    Google Scholar 

  27. Culfaz A, Sand LB (1973) Adv Chem Ser 121:140–151

    Article  CAS  Google Scholar 

  28. Zhdanov SP, Samulevich NN (1980) In: Rees LV (ed) Proceedings of the Fifth International conference on zeolites, Heyden, London, pp 75

    Google Scholar 

  29. Kostinko J (1983) In: Stucky G, Dwyer F (eds) Intrazeolite Chemistry, Am Chem Soc 218:3–19

    CAS  Google Scholar 

  30. Meise W, Schwochow FE (1973) In: Meier U, Uytterhoeven J (eds) Molecular Sieves, Am Chem Soc 121:169–178

    CAS  Google Scholar 

  31. Harris RK, Knight CTG, Hull WE (1981) J Am Chem Soc 103:1577–1578

    Article  CAS  Google Scholar 

  32. Cavill KJ, Masters AF, Filshier KG (1982) Zeolites 2:244–246

    Article  Google Scholar 

  33. Engelhardt G, Hoebhel D (1984) J Chem Soc Chem Commun 5:4–516

    Google Scholar 

  34. Griffits L, Cundy SC, Plaisted JR (1986) J Chem Soc Dalton Trans 2256–2268

    Google Scholar 

  35. Knight CTG, Kirkpatrick RJ, Oldfield E (1986) J Chem Soc Chem Commun 66–67

    Google Scholar 

  36. Gabelica Z, Blom N, Derouane EG (1983) Appl Catal 5:227–339

    Article  CAS  Google Scholar 

  37. Mostowicz R, Berak JM (1985) In: Drzaj B, Hocevar S, Pejovnik S (eds) Zeolites: Synthesis, Structure, Technology and Application, Elsevier, Amsterdam, pp 65–72

    Google Scholar 

  38. Lowe B, MacGilp N, Whittam T (1980) In: Rees L (ed) Proceeding of the Fifth International Conference on Zeolites, pp 85–93

    Google Scholar 

  39. Wieker W, Fahlke B (1985) In: Drzaj B, Hocevar S, Pejovnik S (eds) Zoelites, Synthesis, Structure, Technology and Application, Elsevier, Amsterdam, p 168

    Google Scholar 

  40. Strack H, Roebke W, Knietel D, Parr E (1981) US Patent 4,303,629

    Google Scholar 

  41. Vaughan DEW (1988) Chem Eng Prog 84:25–31

    CAS  Google Scholar 

  42. Roland E (1989) In: Karge HG, Weitkamp J (eds) Zeolites as Catalysts, Sorbents and Detergent Builders, Elsevier, Amsterdam, pp 645–659

    Google Scholar 

  43. Diehl M, Bergmann R, Stadtmuller G, Diener S (1987) US Patent 4,671,887

    Google Scholar 

  44. Wuest W, Guenther J, Berud P (1981) US Patent 4,271,135

    Google Scholar 

  45. Schwuger MJ, Smolka H (1979) Tenside Detergents 16:233–244

    CAS  Google Scholar 

  46. Schwuger M, Smolka H (1978) Colloid Polym Sci 256:1014–1028

    Article  CAS  Google Scholar 

  47. Barri S, Rees L (1980) J of Chromatography 201:21–34

    Article  CAS  Google Scholar 

  48. Barrer R, Rees L, Ward D (1963) Proc Roy Soc London, Ser A 273:180–196

    Article  Google Scholar 

  49. Rees L (1989) In: Karge HG, Weitkamp J (eds) Zeolites as Catalysts, Sorbents and Detergent Builders, Elsevier, Amsterdam, pp 661–672

    Google Scholar 

  50. Barrer RM (1980) In: Rees L (ed) Proceeding of the Fifth International Conference on Zeolites, Heyden, London, pp 273–290

    Google Scholar 

  51. Schwuger M (1982) J Amer Oil Chem Soc 59:265–272

    Article  CAS  Google Scholar 

  52. Pluth J, Smith J (1980) J Am Chem Soc 102:4704–4708

    Article  CAS  Google Scholar 

  53. Gramlich V, Meier W (1971) Z Kristallogr 133:134–149

    Article  CAS  Google Scholar 

  54. Deroy G, Vansant E, Mortier W, Uytterhoeven J (1980) In: Rees LVC (ed) Proceedings of the Fifth International Conference on Zeolites, Heyden, London, pp 214–222

    Google Scholar 

  55. Fitton R (1978) Ger Patent Appl 2743597

    Google Scholar 

  56. DIN standards (1982) Ger 50933, part a

    Google Scholar 

  57. Kittelmann V, Diehl M, Bergmann R, Stadtmuller G (1984) US Patent 4,454,056

    Google Scholar 

  58. Krings P, Verbeek H (1981) Tenside Deterg 18:250–262

    Google Scholar 

  59. Diehl M, Ettlinger M, Kuzel P (1982) Seifen, Oele, Fette, Wachse 108:451–460

    CAS  Google Scholar 

  60. Berth P, Berg M, Hachmann (1983) Tenside Deterg 20:276–283

    CAS  Google Scholar 

  61. Hettche A, Trieselt W, Diessel P (1986) Tenside Deterg 23:12–19

    CAS  Google Scholar 

  62. Kurzendörfer P, Liphard M, Rybinski W, Schwuger M (1986) Proc 7th International Conference of Zeolites. Tokyo, pp 17–22

    Google Scholar 

  63. Andree H, Krings P, Upadek H, Verbeek H (1987) In: Baldwin A (ed) Proceedings Second World Conference on Detergents, Amer Oil Chemists Soc, pp 148–152

    Google Scholar 

  64. Berth P, Krings P, Verbeek H (1981) Tenside Deterg 22:169–178

    Google Scholar 

  65. Krings P, Voght G (1988) Chimia 42:245–256

    CAS  Google Scholar 

  66. Updaek H, Krings P (1989) In: Karge H, Weitkamp J (eds) Zeolites as Catalysts, Sorbents and Detergent Builders, Elsevier, Amsterdam, pp 701–709

    Google Scholar 

  67. Schmulders E, Krings P (1988) Proc 2nd World Surfactant Congress (CESIO) Vol III, pp 430–448

    Google Scholar 

  68. Schwuger M, Smolka H (1976) Colloid Polym Sci 254:1062–1069

    Article  CAS  Google Scholar 

  69. Schwuger M, Rybinski W, Krings P (1984) Prog Colloid Polymer Sci 69:167–173

    CAS  Google Scholar 

  70. Schwuger M (1982) J Amer Oil Chem Soc 59:265–272

    Article  CAS  Google Scholar 

  71. Nüsslein H, Schumann K, Schwuger M (1979) Ber Bunsenges Phys Chem 83:1229–1237

    Google Scholar 

  72. Leonhardt W, Sax BM (1989) In: Karge HS, Weitkamp (eds) Zeolites as Catalysts, Sorbent and Detergent Builders, Elsevier, Amsterdam, pp 691–699

    Google Scholar 

  73. Gloxhuber Ch, Potokar M, Pitterman W, Wallat S, Bartnik F, Renter H, Braig S (1983) Fd Chem Toxic 21:209–220

    Article  CAS  Google Scholar 

  74. Llenado R (1984) In: Olson D, Bisio A (eds) Proceedings of the 6th International Zeolite Conference, Butterworth. pp 940–965

    Google Scholar 

  75. Macdonald T, Martin B (1988) TIBS 13:15–19

    CAS  Google Scholar 

  76. Maltoni C (1988) May, Personal Report to Ausident Enimont group, Italy

    Google Scholar 

  77. Maltoni C (1988) May, Personal Report to Ausident Enimont group, Italy

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. J. Schwuger F. H. Haegel

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Vučelić, D. (1994). Physico-chemical aspects of zeolite-A synthesis and application for environmental safe detergents. In: Schwuger, M.J., Haegel, F.H. (eds) Surfactants and Colloids in the Environment. Progress in Colloid & Polymer Science, vol 95. Steinkopff. https://doi.org/10.1007/BFb0115702

Download citation

  • DOI: https://doi.org/10.1007/BFb0115702

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0994-8

  • Online ISBN: 978-3-7985-1668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics