The imaginary part of the heavy ion optical potential

  • D. M. Brink
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 89)


A number of different methods have been proposed for calculating the imaginary part of the Heavy-Ion Optical potential. In some of these a folding type procedure is used. Real and imaginary parts of the optical potential come from folding of the real and imaginary parts of some effective nucleon-nucleon t-matrix with nuclear densities. Another procedure calculates the loss of flux from the incident channel in second order perturbation theory. Green’s function methods give a way of improving the perturbation approach.

In this lecture a different approach based on Feynman’s path integral method is proposed. It is known that semi-classical methods are very useful for calculating heavy-ion scattering. The Feynman method provides a natural link between a complete quantal theory and semi-classical approximations. By writing a path integral expression for the scattering amplitude one obtains a formula relating the imaginary part of the optical potential to the coupling of the elastic channel to various inelastic and reaction channels. In a perturbation approximation this formula is quite analogous to Feshbach’s formula which has been used recently to obtain a long-range optical potential describing the effects of Coulomb excitation on elastic scattering.


Elastic Scattering Optical Potential Coulomb Barrier Interact Nucleus Folding Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. Brink, J. Neto and H. A. Weidenmüller (to be published).Google Scholar
  2. 2.
    R. Beck and D. H. E. Gross, Phys. Lett. 47B (1973) 143.ADSGoogle Scholar
  3. 3.
    J. S. Blair, Phys. Rev. 95 (1954) 1218, Phys. Rev. 115 (1959) 928.CrossRefADSGoogle Scholar
  4. 4.
    W. E. Frahn, Extended Seminar on Nuclear Physics Trieste 1973 (IAEA, Vienna, 1975) Vol. 1.157.Google Scholar
  5. 5.
    J. B. Ball, C. B. Fulmer, E. E. Gross, M. L. Halbert, D. C. Hensley, C. A. Ludemann, M. J. Saltmarsh and G. R. Satchler, Nucl. Phys. A252 (1975) 208.ADSGoogle Scholar
  6. 6.
    F. Michel and A. Vanderpoorten, Phys. Rev. C16 (1977) 142.ADSGoogle Scholar
  7. 7.
    D. M. Brink and N. Takigawa, Nucl. Phys. A279 (1977) 159.ADSGoogle Scholar
  8. 8.
    P. Braun-Munzinger, G. M. Berkowitz, T. M. Cormier, C. M. Jachcinskc, J. W. Harris, J. M. Barrette and M. J. Levine, Phys. Rev. Lett. 38 (1977) 944.CrossRefADSGoogle Scholar
  9. 9.
    R. M. DeVries, D. A. Goldberg, J. M. Watson, M. S. Zisman and J. G. Cramer, Phys. Rev. Lett. 39 (1977) 450.CrossRefADSGoogle Scholar
  10. 10.
    J. P. Vary and C. B. Dover, Proceedings of Second High Energy Heavy Ion Summer Study, Lawrence Berkeley Lab. (July 1974).Google Scholar
  11. 11.
    A. Dar and Z. Kirson, Phys. Lett. 37B (1971) 166, Nucl. Phys. A237 (1975) 319.ADSGoogle Scholar
  12. 12.
    R. J. Glauber, High Energy Physics and Nuclear Structure, ed. G. Alexander (N.H. 1967).Google Scholar
  13. 13.
    D. A. Saloner and C. Toepffer, Nucl. Phys. A283 (1977) 108ADSGoogle Scholar
  14. 13a.
    D. A. Saloner, C. Toepffer and B. Fink, Nucl Phys. A283 (1977) 131.ADSGoogle Scholar
  15. 14.
    H. Feshbach, Ann. of Phys. 19 (1967) 287.CrossRefADSMathSciNetGoogle Scholar
  16. 15.
    N. Vinh Mau and A. Bouyssy, Nucl. Phys. A257 (1976) 189.ADSGoogle Scholar
  17. 16.
    P. W. Coulter and A. R. Satcher, Nucl. Phys. A293 (1977) 269.ADSGoogle Scholar
  18. 17.
    W. G. Love, T. Terasawa and G. R. Satchler, Phys. Rev. Lett. 39 (1977) 6, Nucl. Phys. A291 (1977) 183.CrossRefADSGoogle Scholar
  19. 18.
    A. J. Baltz, S. K. Kauffmann, N. K. Glendenning and K. Pruess.Google Scholar
  20. 19.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill 1965).Google Scholar
  21. 20.
    P. Pechukas, Phys. Rev. 181 (1969) 174.CrossRefADSGoogle Scholar
  22. 21.
    D. Agassi, C. M. Ko and H. A. Weidenmüller, Ann. Phys. (N.Y.) 107 (1977) 140.CrossRefADSGoogle Scholar
  23. 22.
    K. Alder, A. Bohn, T. Huus, B. Mottelson and A. Winther, Rev. Mod. Phys. 28 (1956) 77.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • D. M. Brink
    • 1
  1. 1.Dept. of Theor. PhysicsOxford

Personalised recommendations