Energy dependence of the phenomenological α-90Zr optical potential

  • L. W. Put
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 89)


The real and imaginary part of the optical model potential describing elastic α-particle scattering from 90Zr were found to have form factors which over the range Eα=80–142 MeV are independent of the bombarding energy. The shape of the real potential in this energy range seems to be determined within close limits over the range 4–8 fm. Low-energy data cannot be described by simultaneously using the same real and imaginary form factors as at high energy. There is strong, although not conclusive, evidence that at low energies the form factor of the real potential has a different shape than at high energies. Some indications for an energy-dependent form factor of the imaginary potential are also present. Ambiguities in the determination of the real potential and the correlation between real and imaginary potential prohibit to draw definite conclusions about the shape of the real and imaginary potential at these low energies.

The available microscopic calculations do not account for the phenomenologically determined potentials and for the details of the experimental data. More detailed microscopic calculations may help us to improve on our understanding of α-particle scattering.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    L.W. Put and A.M.J. Paans, Phys. Lett. 49B (1974) 266.ADSGoogle Scholar
  2. 2).
    L.W. Put and A.M.J. Paans, Nucl. Phys. A291 (1977) 93.ADSGoogle Scholar
  3. 3).
    D.A. Goldberg, S.M. Smith and G.F. Burdzik, Phys. Rev. C10 (1974) 1362.ADSGoogle Scholar
  4. 4).
    D.A. Goldberg and S.M. Smith, Phys. Rev. Lett. 29 (1972) 500.CrossRefADSGoogle Scholar
  5. 5).
    D.F. Jackson and R.C. Johnson, Phys. Lett. 49B (1974) 249.ADSGoogle Scholar
  6. 6).
    D.A. Goldberg, Phys. Lett. 55B (1975) 59.ADSGoogle Scholar
  7. 7).
    F. Michel and R. Vanderpoorten, Phys. Rev. C16 (1977) 142.ADSGoogle Scholar
  8. 8).
    Z. Majka and T. Srokowski, Acta Phys. Pol. B9 (1978) 53.Google Scholar
  9. 9).
    Z. Majka, A. Budzanowski, K. Grotowski and A. Strzalkowsky, Phys.Rev. C18 (1978) 114.ADSGoogle Scholar
  10. 10).
    P.P. Singh, P. Schwandt and G.D. Yang, Phys. Lett. 59B (1975) 113.ADSGoogle Scholar
  11. 11).
    A.A. Cowley and N.S. Wall, Phys. Rev. C17 (1978) 1322.ADSGoogle Scholar
  12. 12).
    D.G. Perkin, A.M. Kobos and J.R. Rook, Nucl. Phys. A245 (1975) 343.ADSGoogle Scholar
  13. 13).
    D.F. Jackson and C.G. Morgan, Phys. Rev. 175 (1968) 1402.CrossRefADSGoogle Scholar
  14. 14).
    P.P. Singh and P. Schwandt, Phys. Lett. 42B (1972) 181.ADSGoogle Scholar
  15. 15).
    D.M. Brink and N. Takigawa, Nucl. Phys. A279 (1977) 159.ADSGoogle Scholar
  16. 16).
    H.H. Chang and B.W. Ridley, University of Colorado, preprint.Google Scholar
  17. 17).
    B. Sinha, Phys. Rev. C11 (1975) 1546.ADSGoogle Scholar
  18. 18).
    N. Vinh Mau, Phys. Lett. 71B (1977) 5.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • L. W. Put
    • 1
  1. 1.Kernfysisch Versneller InstituutRijksuniversiteit GroningenGroningenThe Netherlands

Personalised recommendations