Advertisement

On the general theory of the nucleon optical potential

  • M. K. Weigel
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 89)

Abstract

The aim of this contribution is to obtain some insight in the structure of the so-called “generalized optical potential” GOP for nucleons. We shall follow the pioneering work of Bell and Squires, who connected the optical model problem with the many-body Green’s function (GF) theory. The benefit of this approach is the possibility to utilize modern many-body techniques together with known numerical results in the investigation of the GOP. We will concentrate on the general features of the optical potential and discuss briefly some approximation schemes feasible for the calculation of the GOP. In the discussion of numerical results, we restrict ourselves to investigations connected with dispersion relations.

Keywords

Green Function Dispersion Relation Optical Model Optical Potential Mass Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ab 63.
    A.A. Abrikosov, L. Gorkov and I. Dzyaloshinsky; Methods of Quantum Field Theory in Statistical Physics (Pergamon 1963)Google Scholar
  2. Be 59.
    J.S. Bell and E.J. Squires; Phys. Rev. Lett. 3 (1959) 96CrossRefADSGoogle Scholar
  3. Ba 62.
    G. Baym and L.P. Kadanoff; Quantum Statistical Mechanics (Benjamin 1962)Google Scholar
  4. Br 63.
    W. Brenig and H. Wagner; Z. Physik 173 (1963) 484zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. Co 58.
    F. Coester and H. Kümmel; Nucl. Phys. 9 (1958) 225zbMATHGoogle Scholar
  6. E 76.
    G. Eckart; Z. Physik A278 (1976) 145ADSGoogle Scholar
  7. E 76.
    G. Eckart; thesis, Munich university pp 5–39Google Scholar
  8. Em 71.
    K. Emrich; Nucl. Phys. A160 (1971) 1ADSGoogle Scholar
  9. ES 69.
    S. Ethofer and P. Schuck; Z. Physik 228 (1969) 264CrossRefADSMathSciNetGoogle Scholar
  10. EW 76.
    G. Eckart and M.K. Weigel; J. Phys. G. (Nucl. Phys.) 2 (1976) 487CrossRefADSGoogle Scholar
  11. EW 76.
    G. Eckart; thesis, Munich university pp 40–76Google Scholar
  12. Fe 58.
    H. Feshbach; Ann. Phys. 5 (1958) 357zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. Fe 62.
    H. Feshbach; Ann. Phys. 19 (1962) 287zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. Fet 65.
    A. Fetter and K. Watson; Adv. Theor. Phys. 1 (1965) 115MathSciNetGoogle Scholar
  15. Fe 71.
    A.L. Fetter and J.D. Walecka; Quantum Theory of Many-Particle Systems (McGraw-Hill 1971)Google Scholar
  16. Ga 76.
    H. Gall and M.K. Weigel; Z. Physik A276 (1976) 45ADSGoogle Scholar
  17. Ho 71.
    P. Hodgson; Nuclear Reactions and Nuclear Structure (Clarendon 1971)Google Scholar
  18. Ke 59.
    A.K. Kerman, H. McManus and R.M. Thaler; Ann. Phys. 8 (1959) 551CrossRefADSGoogle Scholar
  19. Ko 62.
    D.H. Kobe; Ann. Phys. 19 (1962) 448zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. Li 66.
    R. Lipperheide; Nucl. Phys. 89 (1966) 97CrossRefGoogle Scholar
  21. Mat 76.
    R.D. Mattuck; A guide to Feynman diagrams in the many-body problem (McGraw-Hill 1976)Google Scholar
  22. Ma 59.
    P.C. Martin and J. Schwinger; Phys. Rev. 115 (1959) 1342zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. Mi 67.
    A.B. Migdal; Theory of Finite Fermi Systems (Wiley 1967)Google Scholar
  24. Pa 67 68.
    G. Passatore; Nucl. Phys. A95 (1967) 694; Nucl. Phys. A110 (1968) 91ADSGoogle Scholar
  25. Pa 76.
    G. Passatore in Nuclear Optical Model Potential in Lecture Notes in Physics (Springer 1976) pp 1–19, pp 177–203Google Scholar
  26. Na 60.
    N. Naminiki; Prog. Theor. Phys. 23 (1960) 629CrossRefADSGoogle Scholar
  27. Ro 74.
    J.R. Rook; Nucl. Phys. A222 (1974) 596ADSGoogle Scholar
  28. Vi 67.
    F. Villars; in Fundamentals in Nuclear Theory (Vienna 1967; IAEA) pp 269–332Google Scholar
  29. We 71.
    M.K. Weigel and G. Wegmann; Fortschritte d. Phys. 19 (1971) 451CrossRefGoogle Scholar
  30. Wi 72.
    J. Winter; Nucl. Phys. A194 (1972) 535ADSGoogle Scholar
  31. Wi 75.
    J. Winter; thesis, Munich university 1975Google Scholar
  32. Wi 78.
    J. Winter; Fortschritte d. Phys. 26 (1978) 29CrossRefGoogle Scholar
  33. Zh 65.
    F.A. Zhivopistsev; Sov. J. Nucl. Phys. 1 (1965) 429Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. K. Weigel
    • 1
  1. 1.Sektion Physik der Universität MünchenGarching

Personalised recommendations