Advertisement

An on-line interferometer for the XL-A ultracentrifuge

  • T. M. Laue
  • A. L. Anderson
  • P. D. Demaine
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 94)

Abstract

As a result of the renewed interest in analytical ultracentrifugation, the Beckman XL-A was released recently. This instrument automates spectrophotometric measurements of the concentration distribution of molecules in a gravitational field. Presented here is the design and the performance characteristics of a Rayleigh interferometer for the XL-A ultracentrifuge. The interferometer consists of a laser diode light source, imaging optics providing a 1.4-fold magnification of the cell, and a solid-state television camera detector. The source and detector are interfaced to a personal computer which synchronizes data acquisition for up to four cells, performs data reduction, and allows data analysis. About 1700 dat points, at a radial spacing of ∼ 9 µm, are acquired over a standard double sector cell image. Data are then stored on the disk and presented as a graph on the screen. The complete sequence of data acquisition, storage, and presentation requires about 15 s. The interformeter has a precision of about ± 0.003 fringe, and can be used for both equilibrium and velocity sedimentation. The design can be adapted for Schlieren detection.

Key words

Analytical ultracentrifuge interferometry instrumentation equilibrium sedimentation velocity sedimentation methods hydrodynamics thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richards EG, Schachman HK (1959) J Phys Chem 63:1578–1591CrossRefGoogle Scholar
  2. 2.
    Richards EG, Teller DC, Schachman HK (1971) Anal Biochem 41:189–214CrossRefGoogle Scholar
  3. 3.
    DeRosier DJ, Munk P, Cox DJ (1972) Anal Biochem 50:139–153CrossRefGoogle Scholar
  4. 4.
    Laue TM “Rapid Precision Interferometry for the Analytical Ultracentrifuge,” Ph.D. Dissertation, Univ of Connecticut, Storrs, CT, 1981Google Scholar
  5. 5.
    Teller DC (1967) Anal Biochem 19:256–264CrossRefGoogle Scholar
  6. 6.
    Richards JH, Richards EG (1974) Anal Biochem 62:523–530CrossRefGoogle Scholar
  7. 7.
    Perlman GE, Longsworth LG (1948) J Am Chem Soc 70:2719–2724CrossRefGoogle Scholar
  8. 8.
    Yphantis DA (1964) Biochemistry 3:297–317CrossRefGoogle Scholar
  9. 9.
    Yphantis DA (1960) Ann New York Acad Sci 88:586–601CrossRefGoogle Scholar
  10. 10.
    Laue TM (1992) In: Harding SE, Rowe A, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Chemistry, Royal Chemical Society, Cambridge, pp 63–89Google Scholar
  11. 11.
    Stafford WF III (1992) In: Harding SE, Rowe A, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Chemistry, Roayl Chemical Society, Cambridge, pp 359–393Google Scholar
  12. 12.
    Yphantis DA (1979) In: Hirs, CHW, Timasheff, SN (eds) Methods in Enzymology Volume 61, Academic Press, New York, pp 3–12Google Scholar
  13. 13.
    Laue TM (1993) In: Cohn G (ed), Ultrasensitive Clinical Laboratory Diagnostics, SPIE Proceedings, Vol 1895, SPIE, Bellingham, Washington, pp 18–27Google Scholar
  14. 14.
    Rowe AJ, Wynne Jones S, Thomas DG, Harding SE (1992) In: Harding SE, Rowe A, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Chemistry, Royal Chemical Society, Cambridge, pp 49–62Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1994

Authors and Affiliations

  • T. M. Laue
    • 1
  • A. L. Anderson
    • 1
  • P. D. Demaine
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of New HampshireDurhamUSA

Personalised recommendations