Skip to main content

Sedimentation equilibrium analysis of glycopolymers

  • Conference paper
  • First Online:
Ultracentrifugation

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 94))

Abstract

The glycopolymers — a general term used to represent polysaccharides and glycoconjugates collectively — present the analytical ultracentrifuge — and in particular sedimentation equilibrium analysis — with one of its greatest challenges. In this paper the difficult nature of these substances will be described as well as why the inherent fractionation nature of the sedimentation equilibrium method gives it an edge over other techniques. The problems of limited choice of optical system which can be applied (through lack of naturally occurring chromophores), the importance of both the Rayleigh and Schlieren optical systems for these substances, the inapplicability of the meniscus depletion method, how we can get meniscii concentrations out, automatic data capture and analysis, extraction of “whole distribution” and point average molar masses, coping with the severe non-ideality one often finds with solutions of these substances and how we can distinguish between “polydispersity” (i.e., the presence of species of different molar mass or density not in chemical equilibrium) and self-association are all discussed. Finally, and after taking on-board the non-ideality problem, four methods of extracting distributions of molar mass are considered, focussing on one method which combines sedimentation equilibrium with gel permeation chromatography. In concluding, this theme of the importance of combining data with that from other techniques is continued by discussing the important relation sedimentation equilibrium has with classical (i.e., so-called “static”) light scattering procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harding SE (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Science Chap 27, Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  2. Harding SE (1989) Adv Carbohyd Chem & Biochem 47:345–381

    CAS  Google Scholar 

  3. Harding SE, Berth G, Ball A, Mitchell JR, Garcia de la Torre J (1991) Carbohyd Polym 16:1–15

    Article  CAS  Google Scholar 

  4. Giebler R (1992) In: Harding SE, Rowe AJ, Horton, JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Science Chap 2, Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  5. Yphantis DA (1964) Biochemistry, 3:297–317

    Article  CAS  Google Scholar 

  6. Harding SE (1984) Biochem J 219:1061–1064

    CAS  Google Scholar 

  7. Fujita H (1975) Foundations of Ultracentrifuge Analysis, Chap 5, Wiley and Sons, New York

    Google Scholar 

  8. Creeth JM, Pain RH (1967) Prog Biophys Mol Biol 17:217–287

    Article  CAS  Google Scholar 

  9. Creeth JM, Harding SE (1982) J BIochem Biophys Meth 7:25–34

    Article  CAS  Google Scholar 

  10. Harding SE, Horton JC, Morgan PJ (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Science Chap 15, Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  11. Laue TM (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Science Chap 6, Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  12. Rowe AJ, Wynne-Jones S, Thomas DG, Harding SE (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Science Chap 5, Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  13. Teller DC (1965) PhD Dissertation, University of California, Berkeley, California, and (1973) Meth Enzymol 27:346–441

    Google Scholar 

  14. Harding SE (1985) Biophys J 47:247–250

    Article  CAS  Google Scholar 

  15. Gilbert GA, Gilbert LM (1980) J Mol Biol 144:405–408

    Article  CAS  Google Scholar 

  16. Creeth JM, Harding SE (1982) Biochem J 205:639–641

    CAS  Google Scholar 

  17. Harding SE, Johnson P (1985) Biochem J 231:549–555

    CAS  Google Scholar 

  18. Kawahawa K, Ohta K, Miyamoto H, Nakamura S (1984) Carbohyd Polym 4:335

    Article  Google Scholar 

  19. Sato T, Norisuye T, Fujita H (1984) Macromolecules 17:2696

    Article  CAS  Google Scholar 

  20. Woodward JR, Phillips DR, Fincher GB (1983) Carbohyd Polym 1983, 3:143

    Article  CAS  Google Scholar 

  21. Errington N, Harding SE, Vårum KM, Illum L (1993) Int J Biol Macromol 15:113–117

    Article  CAS  Google Scholar 

  22. Edmond E, Farquhar S, Dunstone JR, Ogston AG (1968) Biochem J 108:755

    CAS  Google Scholar 

  23. Muzzarelli RAA, Lough C, Emanuelli M (1987) Carbohyd Res 164:433

    Article  CAS  Google Scholar 

  24. Harding SE, Rowe AJ, Creeth JM (1983) Biochem J 209:893–896

    CAS  Google Scholar 

  25. Berth G, Dautzenberg H, Lexow D, Rother G (1990) Carbohyd Polym 12:39

    Article  CAS  Google Scholar 

  26. Lecacheux D, Mustiere Y, Panaras R, Brigand G (1986) Carbohyd Polym 6:477

    Article  CAS  Google Scholar 

  27. Wedlock DJ, Baruddin BA, Phillips GO (1986) Int J Biol Macromol 8:57

    Article  CAS  Google Scholar 

  28. Horton JC, Harding SE, Mitchell JR, Morton-Holmes DF (1991) Food Hydrocolloids, 5:125–127

    Article  CAS  Google Scholar 

  29. Jumel K, Mitchell JR, Harding SE (1993) in preparation

    Google Scholar 

  30. Creeth JM, Cooper B (1984) Biochem Soc Trans 12:618–621

    CAS  Google Scholar 

  31. Mannion RO, Melia CD, Launay B, Cuvelier G, Hill SE, Harding SE, Mitchell JR (1992) Carbohyd Polym 19:91–97

    Article  CAS  Google Scholar 

  32. Harding SE, Creeth JM (1982) IRCS (Int Res Commun System) Med Sci Lib Compend 10:474–475

    CAS  Google Scholar 

  33. Roark D, Yphantis DA (1969) Ann NY Acad Sci 164:245–278

    Article  CAS  Google Scholar 

  34. Howlett GL, Jeffrey PD, Nichol LW (1972) J Phys Chem 76:77

    Google Scholar 

  35. Herdan G (1949) Nature 163:139

    CAS  Google Scholar 

  36. Lechner MD (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Science Chap 16, Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  37. Harding SE, Ball A, Mitchell JR (1988) Int J Biol Macromol 10:259–264

    Article  Google Scholar 

  38. Schachman HK (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Science Chap 1, Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  39. Harding SE (1988) Gums & Stabilisers for the Food Industry 4:15–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. D. Lechner

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Harding, S.E. (1994). Sedimentation equilibrium analysis of glycopolymers. In: Lechner, M.D. (eds) Ultracentrifugation. Progress in Colloid & Polymer Science, vol 94. Steinkopff. https://doi.org/10.1007/BFb0115602

Download citation

  • DOI: https://doi.org/10.1007/BFb0115602

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0982-5

  • Online ISBN: 978-3-7985-1675-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics