Skip to main content

Field-cycling NMR relation spectroscopy of molten linear and cross-linked polymers Observation of a T 1 ∝ ν0.25 law for semi-global chain fluctuations

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 90))

Abstract

Melts of polydimethylsiloxane, polyisoprene, polyisobutylene, and polyethylene were studied by the aid of proton relaxation spectroscopy predominantly using the field-cycling technique. Spin-lattice relaxation in the rotating frame (T ) and transverse relaxation were investigated in addition. With spin-lattice relaxation the total frequency range was 103 to 3 · 108 Hz. Linear as well as cross-linked polymers with varying molecular weights and mesh lengths, respectively, were studied. Close to or above the critical molecular weight, peculiar frequency dependencies of the spin-lattice relaxation times were found which can be described by power laws ω1/4 or ω1/2. Depending on the molecular weight and the temperature, a crossover between these frequency dependences takes place. For low molecular weights and high temperatures the indication of a low-frequency plateau appears. Empirically the dispersion can be described well by the aid of the intensity function \(I(\omega ) = \frac{{I(0)}}{{1 + c_1 \omega ^{1/4} + c_2 \omega ^{1/2} }}\). The molecular weight dependences of the low-frequency spin-lattice relaxation times and of the transverse relaxation times suggest that the corresponding fluctuations have partly local and partly global features. The experimental findings are discussed in terms of the three-component scheme of chain fluctuations previously reported.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rouse PE (1953) J Chem Phys 21:1272–1280

    Article  CAS  Google Scholar 

  2. Doi M Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford

    Google Scholar 

  3. de Gennes PG (1971) J Chem Phys 55:572–579

    Article  Google Scholar 

  4. Doi M (1981) J Polymer Sci, Polym Lett 19:265–273

    Article  CAS  Google Scholar 

  5. Kimmich R, Schnur G, Köpf M (1988) Progr NMR Spectr 20:385–421

    Article  Google Scholar 

  6. Zalwert S (1970) Makromol Chemie 131:205–216

    Article  CAS  Google Scholar 

  7. Kimmich R, Köpf M (1989) Progr Colloid Polym Sci 80:8–20

    Article  CAS  Google Scholar 

  8. Köpf M, Schnur G, Kimmich R (1988) J Polym Sci: Polym Lett 26:319–323

    Article  Google Scholar 

  9. Kimmich R, Bachus R (1982) Colloid Polym Sci 260:911–936

    Article  CAS  Google Scholar 

  10. Kimmich R, Köpf M, Callaghan P (1991) J Polym Sci: Polym Physics Ed 29:1025–1030

    Article  CAS  Google Scholar 

  11. Callaghan PT (1988) Polymer 29:1951–1959

    Article  CAS  Google Scholar 

  12. Huirua TM, Wang R, Callaghan PT (1990) Macromolecules 23:1658–1664

    Article  CAS  Google Scholar 

  13. Kimmich R (1977) Polymer 18:233–238

    Article  CAS  Google Scholar 

  14. Andrianov KA, Zhadnov AA, Litvinov VM, Larrukhin BD, Isitsishvili VG (1975) Vysokomol Soyed A17:1323–1326

    Google Scholar 

  15. Litvinov VM, Lavrukhin BD, Zhdanov AA, Andrianov KA (1977) Polymer Sci USSR 19:2330–2340

    Article  Google Scholar 

  16. Simon G, Birnstiel A, Schimmel K-H (1989) Polym Bull 21:235–241

    Article  CAS  Google Scholar 

  17. Folland R, Steven JH, Charlesby A (1978) J Polym Sci: Polym Physics Ed 16:1041–1057

    Article  CAS  Google Scholar 

  18. Litvinov VM, Lavrukhin BD, Zhdanov AA (1985) Polymer Sci USSR 27:2786–2794

    Article  Google Scholar 

  19. Grapengeter H-H, Kosfeld R, Offergeld H-W (1980) Colloid Polym Sci 258:564–569

    Article  CAS  Google Scholar 

  20. Grapengeter H-H, Alefeld A, Kosfeld R (1987) Colloid Polym Sci 265:226–233

    Article  CAS  Google Scholar 

  21. Burnett LI, Rottler CL, Laughon DH (1978) J Polym Sci: Polym Physics Ed 16:341–347

    Article  CAS  Google Scholar 

  22. Andrady AL, Llorente MA, Mark JE (1991) Polym Bull 26:357–362

    Article  CAS  Google Scholar 

  23. Kosfeld R, Heß M (1981) Angew Makromol Chemie 95:149–154

    Article  Google Scholar 

  24. Oppermann W, Rehage G (1981) Colloid Polym Sci 259:1177–1189

    Article  CAS  Google Scholar 

  25. Ewen B (1984) Pure Appl Chem 56:1407–1422

    Article  CAS  Google Scholar 

  26. Oeser R, Ewen B, Richter D, Farago B (1988) Phys Rev Letters 60:1041–1044

    Article  CAS  Google Scholar 

  27. Richter D, Ewen B, Farago B, Wagner T (1989) Phys Rev Letters 62:2140–2143

    Article  CAS  Google Scholar 

  28. Adachi H, Adachi K, Ishida Y, Kotaka T (1979) J Polym Sci: Polym Physics Ed 17:851–857

    Article  CAS  Google Scholar 

  29. Naoki M, Kondo S (1983) Polymer 24:1139–1144

    Article  CAS  Google Scholar 

  30. Kimmich R, Unrath W, Schnur G, Rommel E (1991) J Magn Reson 91:136–140

    CAS  Google Scholar 

  31. Noack F (1986) Progr NMR Spectr 18:171–276

    Article  CAS  Google Scholar 

  32. Abragam A (1961) The Principles of Nuclear Magnetism. Clarendon Press, Oxford

    Google Scholar 

  33. Look DC, Lowe IJ (1966) J Chem Phys 44:2995–3000

    Article  CAS  Google Scholar 

  34. Kimmich R, Rosskopf E, Schnur G, Spohn K-H (1985) Macromolecules 18:810–812

    Article  CAS  Google Scholar 

  35. Kimmich R (1975) Polymer 16:851–852

    Article  CAS  Google Scholar 

  36. Schneider H, Hiller W (1990) J Polym Sci: Polym Physics Ed 28:1001–1014

    Article  CAS  Google Scholar 

  37. Koch H, Bachus R, Kimmich R (1980) Polymer 21:1009–1016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Weber, H.W., Kimmich, R., Köpf, M., Ramik, T., Oeser, R. (1992). Field-cycling NMR relation spectroscopy of molten linear and cross-linked polymers Observation of a T 1 ∝ ν0.25 law for semi-global chain fluctuations. In: Physics of Polymer Networks. Progress in Colloid & Polymer Science, vol 90. Steinkopff. https://doi.org/10.1007/BFb0115487

Download citation

  • DOI: https://doi.org/10.1007/BFb0115487

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0914-6

  • Online ISBN: 978-3-7985-1679-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics