Skip to main content

Chain extension and orientation: Fundamentals and relevance to processing and products

  • Conference paper
  • First Online:
Orientational Phenomena in Polymers

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 92))

Abstract

Flow induced orientation, the subject of this article, is being surveyed in its wide variety of manifestations. This includes crystallisation together with the resulting orientation in the solidified product, a broad survey of past works here placed in a new perspective not presented hitherto, and novel rheological effects observed lately in melt flow containing some recent results, some to be announced here for the first time. The theme connecting the two separate subject areas is the coil → stretch transition produced by the appropriate flows allowing for only two states, the essentially random coil and the essentially fully stretched out state, with no intermediate state under steady state conditions in between. Each of the above two states leads to its own characteristic morphology on crystallisation which then characterise the final product and the resulting orientation pattern as registered by x-ray diffraction. It is being argued that the whole range of orientation patterns observed in articles crystallised under melt flow are accountable by the variable ratios of the two crystal morphologies, lamellae and fibres arising from the respective random and fully aligned chain orientations, through their various combinations, without the need for involving intermediate chain or crystal orientations at least as relating to the strength of the primary orienting influence. — The novel rheological effects are arising from the main theme, namely the random and extended chain duality, with criticalities in terms of both strain rate and molecular weight sharply delineating the two states. This, when coupled with a so far unspecified phase transition, can provide an unexpectedly sharp temperature singularity (window) in extrusion behaviour potentially highly advantageous for processing applications. With constant piston velocity this is manifest as a sharp minimum in extrusion pressure, and at fixed extrusion pressure as a sharp maximum in extrudate exit velocity, the criticality in either case displaying an inverse fourth power dependence on molecular weight. — In order to provide an underpinning for both classes of effect raised above, a brief survey is provided on the fundamentals of elongational flow induced coil → stretch transitions as explored experimentally in the Bristol laboratory on polymer solutions. This is accompanied by a discussion of the transferability of those results to melts including both the parallels between the two systems and the apparent problems such a transfer seems to raise, ending on some open ended issues as regards similarities and differences between freely flowing melts and extension of connected networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keller A (1979) In: Ciferri A, Ward IM (eds) Ultra-High Modulus Polymers. Appl Sci Publ London, p 321

    Google Scholar 

  2. Keller A (1977) J Polym Sci Polym Symp 58:395

    Article  CAS  Google Scholar 

  3. Keller A, Mackley MR (1974) Pure Appl Chem 39:195

    CAS  Google Scholar 

  4. de Gennes P-G (1974) J Chem Phys 60:15

    Article  Google Scholar 

  5. Peterlin A (1966) J Polym Sci B4:287

    Google Scholar 

  6. Pope DP, Keller A (1978) Coll Poym Sci 256:751

    Article  CAS  Google Scholar 

  7. Odell JA, Narh KA, Keller A (1992) J Polym Sci: Part B: Polym Phys 30:335

    Article  Google Scholar 

  8. Odell JA, Keller A, Muller AJ (1992) Coll Polym Sci 270:301

    Article  Google Scholar 

  9. Keller A, Odell JA (1985) Coll Polym Sci 263:181

    Article  CAS  Google Scholar 

  10. Mackley MR, Keller A (1975) Phil Trans Roy Soc London Ser A 278:29

    Article  CAS  Google Scholar 

  11. Miles MJ, Keller A (1980) Polymer 21:1295

    Article  CAS  Google Scholar 

  12. Odell JA, Keller A, Miles MJ (1985) Polymer 26:1219

    Article  CAS  Google Scholar 

  13. Keller A, Muller AJ, Odell JA (1985) Progr Coll Polym Sci 75:179

    Article  Google Scholar 

  14. Chow A, Keller A, Muller AJ, Odell JA (1988) Macrom 21:250

    Article  CAS  Google Scholar 

  15. Pennings AJ, van der Mark JMAA, Booij HC (1970) Kolloid Z v Z Polymere 236:99

    Article  CAS  Google Scholar 

  16. Narh KA, Keller A, unpublished results

    Google Scholar 

  17. Pennings AJ (1992) Lecture at EPS Conf St Petersburg

    Google Scholar 

  18. Mackley MR, Keller A (1973) Polymer 14:16

    Article  CAS  Google Scholar 

  19. Mackley MR, Frank FC, Keller A (1975) J Mater Sci 10:1501

    Article  CAS  Google Scholar 

  20. van der Vegt AK, Smit PPA (1967) Adv Polym Sci Monograph 26, Soc Chem Ind London 313

    Google Scholar 

  21. Southern JH, Porter RS (1970) J Macromol Sci B4:541

    Article  Google Scholar 

  22. Keller A (1955) J Polym Sci 15:31

    Article  CAS  Google Scholar 

  23. Keller A, Machin MJ (1967) J Macromol Sci B1:41

    Article  Google Scholar 

  24. Choi KJ, Spruiell JE, White JL (1982) J Polym Sci Polym Phys Ed 20:27

    Article  CAS  Google Scholar 

  25. Nagasawa T, Matsumura T, Hoshino S (1973) Appl Polym Symp 20:295

    Google Scholar 

  26. Bashir Z, Odell JA, Keller A (1984) J Mater Sci 19:617

    Article  Google Scholar 

  27. Hill MJ, Keller A (1969) J Macromol Sci-Phys B3(1):153

    Article  Google Scholar 

  28. Andrews EH (1966) J Polym Sci A-2, 4:663

    Article  Google Scholar 

  29. Phillips P (1983) chapter 2 of Engineering Dielectrics, Vol IIA, Bartnikas R, Eichhorn RM (eds) ASTM STP 783

    Google Scholar 

  30. Jenkins H (1974) Ph D thesis, University of Bristol

    Google Scholar 

  31. Odell JA, Grubb DT, Keller A (1978) Polymer 19:617

    Article  CAS  Google Scholar 

  32. Dlugosz J, Grubb DT, Keller A, Rhodes MB (1972) J Mater Sci 7:142

    Article  CAS  Google Scholar 

  33. Petermann J, Miles M, Gleiter H (1979) J Polym Sci: Polym Phys Ed 17:55

    Article  CAS  Google Scholar 

  34. Waddon AJ, Keller A (1990) J Polym Sci: Part B: Polym Phys 28:1063

    Article  CAS  Google Scholar 

  35. Narh KA, Keller A (1991) Polymer 32:2513

    Article  Google Scholar 

  36. Kolnaar JWH, Keller A, Polymer in the press

    Google Scholar 

  37. Waddon AJ, Keller A (1992) J Polym Sci: Part B: Polym Phys 30:923

    Article  CAS  Google Scholar 

  38. Bassett DC, Block S, Piermarini GC (1974) J Appl Phys 45:4156

    Article  Google Scholar 

  39. Clough SB (1970) J Macrom Sci B4:199

    Article  Google Scholar 

  40. Pennings AJ, Zwijnenburg A (1979) J Polym Sci: Polym Phys Ed 17:1011

    Article  CAS  Google Scholar 

  41. Keller A, Ungar G (1991) J Appl Polym Sci 42:1683

    Article  CAS  Google Scholar 

  42. Rastogi S, Odell JA (1993) Polymer 34:1523

    Article  CAS  Google Scholar 

  43. Vinogradov GV, Malkin AY, Yanovskii YG, Borisenkova EK, Yarlykov BY, Berezhnaya GV (1972) J Polym Sci A-2, 10:1061

    Article  CAS  Google Scholar 

  44. McLeish TC, Ball RC (1986) J Polym Sci: Polym Phys Ed 24:1735

    Article  CAS  Google Scholar 

  45. Hill MJ, Keller A (1981) Coll Polym Sci 259:335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

L. Myasnikova V. A. Marikhin

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Keller, A., Kolnaar, J.W.H. (1993). Chain extension and orientation: Fundamentals and relevance to processing and products. In: Myasnikova, L., Marikhin, V.A. (eds) Orientational Phenomena in Polymers. Progress in Colloid & Polymer Science, vol 92. Steinkopff. https://doi.org/10.1007/BFb0115450

Download citation

  • DOI: https://doi.org/10.1007/BFb0115450

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0954-2

  • Online ISBN: 978-3-7985-1677-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics