Skip to main content

pH-dependent aggregation state of highly dispersed alumina, titania and silica particles in aqueous medium

  • Suspensions And Emulsions
  • Conference paper
  • First Online:
Trends in Colloid and Interface Science IX

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 98))

Abstract

Highly dispersed commercial products (Aluminium oxide C, Titanium dioxide P25 and Aerosil 200) of Degussa were investigated. Their pH-dependent surface charge state was determined from acid-base titrations in the presence of KNO3. The p.z.c. values were measured at pHs 8.0 for Al2O3, 5.9 for TiO2 and ∼4 for SiO2. The calculated intrinsic equilibrium constants for surface charge (σ 0) formation are log K inta1 =5.8, log K inta2 =10.2 for Al2O3, log K inta1 =3.6, log K inta2 =8.1 for TiO2 and log K inta2 =8.02 for SiO. The experimental σ 0 vs. pH curves were fitted by using the DDL model of MICROQL-UCR program. The aggregation state in dense suspensions was investigated by means of rheology and SAXS method. The rheological character of flow curves changed from Newtonian to pseudoplastic or to highly thixotropic, depending on the pH of suspensions. The experimental yield values (initial or Bingham) showed maximum at the p.z.c. Scattering curves of aggregated (at p.z.c.) and well-stabilized (at pH far from p.z.c.) oxide suspensions were determined. The correlation length values were calculated on the basis of theoretical approach of Debye-Bueche which were independent of the solid/liquid ratio of suspensions at p.z.c., indicating that aggregation was controlled by attractive forces between particles, while those increased with increasing dilution in well stabilized systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parks GA, de Bruyn (1962) J Phys Chem 66:967–973

    Article  CAS  Google Scholar 

  2. Healy TW, White LR (1978) Adv Colloid Interface Sci 9:303–345

    Article  CAS  Google Scholar 

  3. Westall J, Hohl H (1980) adv Colloid Interface Sci 12:265–294

    Article  CAS  Google Scholar 

  4. James RO, Parks GA (1982) in: Matijevic E(ed) Surface and Colloid Science Vol 12, Plenum Press, New York, pp 119–216

    Google Scholar 

  5. Lyklema J (1987) In: Tadros ThF(ed) Solid/Liquid Dispersions, Academic Press, London, pp 63–90

    Google Scholar 

  6. Hohl H, Sigg L, Stumm W (1980) In: Kavanaugh MC, Leckie JO(eds) Particulates in Water. Adv Chem Ser No 189, ACS, Washington, DC, pp 1–31; Huang CP, Stumm W (1973) J Colloid Interface Sci 43:409–420; Hohl H, Stumm W (1976) J Colloid Interface Sci 55:281–288

    Google Scholar 

  7. Coves J, SPosito G (1989) MICROQL-UCR: A Surface Chemical Adaptation of the Speciation Program MICROQL, University of California, Riverside

    Google Scholar 

  8. Sparks DL (ed) (1986) Soil Physical Chemistry. CRC Press, Boca Raton, Florida, pp 70–77

    Google Scholar 

  9. Nikumbh AK, Schmidt H, Martin K, Porz F, Thümmler F (1990) J Mater Sci 25:15–21

    Article  CAS  Google Scholar 

  10. Firth BA, Hunter RJ (1976) J Colloid Interface Sci 57:248–256

    Article  CAS  Google Scholar 

  11. Firth BA (1976) J Colloid Interface Sci 57:257–265

    Article  CAS  Google Scholar 

  12. Firth BA, Hunter RJ (1976) J Colloid Interface Sci 57:266–275

    Article  CAS  Google Scholar 

  13. Hunter RJ, Frayne J (1979) J Colloid Interface Sci 71:30–38

    Article  CAS  Google Scholar 

  14. Hunter RJ (1982) Adv Colloid Interface Sci 17:097–211

    Article  Google Scholar 

  15. Wiese RG, Healy TW (1975) J Colloid Interface Sci 51:427–433

    Article  CAS  Google Scholar 

  16. Kratky O, Laggner P (1987) Encyclopeadia of Psysical Science and Technology

    Google Scholar 

  17. Jánosi A (1993) Monatscefte für Cheme 124:815–826

    Article  Google Scholar 

  18. Schaefer DW, Martin JE (1984) Physical Review Letters 52:2371–2374

    Article  CAS  Google Scholar 

  19. Debye P, Bueche A (1949) J Appl Phys 20:518–525

    Article  CAS  Google Scholar 

  20. Russel TP, Lin JS, Spooner S, Wignall GD (1988) J Appl Cryst 21:629–638

    Article  Google Scholar 

  21. Peschel G, Belouschek P, Müller MM, Müller MR, König R (1982) Colloid Polym Sci 260:444–451

    Article  CAS  Google Scholar 

  22. Israelachvili JN (1985) Intermolecular and surface forces. Academic Press, London pp 194–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Appell G. Porte

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Tombácz, E., Szekeres, M., Kertész, I., Turi, L. (1995). pH-dependent aggregation state of highly dispersed alumina, titania and silica particles in aqueous medium. In: Appell, J., Porte, G. (eds) Trends in Colloid and Interface Science IX. Progress in Colloid & Polymer Science, vol 98. Steinkopff. https://doi.org/10.1007/BFb0115229

Download citation

  • DOI: https://doi.org/10.1007/BFb0115229

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1031-9

  • Online ISBN: 978-3-7985-1667-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics